REABILITAÇÃO DE Zonas de PONTE TÉRMICA DA ENVolvenTe DOS EDIFÍCIOS
Solving thermal bridges problems with building rehabilitation actions

Isabel Abreu
Engª. Civil, Mestre em Construção de Edifícios
Instituto Politécnico de Bragança
isabreu@ipb.pt

Helena Corvacho
Engª. Civil, Profª. Auxiliar
FEUP - DEC - SCC
corvacho@fe.up.pt

Resumo
São bem conhecidas as implicações negativas da existência de pontes térmicas na envolvente dos edifícios, tais como a ocorrência de condensações superficiais e o desenvolvimento de bolores. Com a intenção de evitar essas implicações negativas, têm vindo a ser concebidas correções, que introduzem uma muito reduzida ou nula melhoria do seu comportamento térmico e que, com frequência, dão origem a novas anomalias construtivas.
Com o objectivo de propor soluções que contribuam, simultaneamente, para minimizar o fenómeno de ponte térmica e resolverem eventualis anomalias de outra natureza, foi levado a cabo na FEUP um estudo [1] do qual se apresentam aqui alguns resultados. Foi dada uma particular atenção às situações de alvenaria não confinada, com tentativas de correção com formas cerâmicas exteriores.
Palavras-chave: Pontes Térmicas, Reabilitação.

Abstract
The negative consequences of thermal bridges like surface condensation and mould are well known. In order to minimize these consequences, some measures are being adopted, in practice, which do not upgrade the thermal behaviour of thermal bridges and bring some other pathologic problems.

Aiming to propose solutions that, simultaneously, minimise thermal bridge effects and solve other building anomalies, a study has been carried out in FEUP [1]. This paper presents some results of that study. Some rehabilitation solutions are proposed for the most critical thermal bridges. A particular attention is given to the non-confined masonry work with a ceramic covering of the concrete structure.
Keywords: Thermal Bridges, Rehabilitation.

1 Identificação das Zonas de Ponte Térmica Mais Problemáticas
Da caracterização térmica de pontes térmicas já realizada [2] identificaram-se as zonas mais problemáticas para a ocorrência de condensações em função da localização no edifício. Em cada uma destas zonas, a gravidade das situações depende, como é evidente, das características dos materiais utilizados, do tipo de disposição construtiva existente e da localização do isolamento térmico utilizado. Na generalidade dos casos, as situações onde se verificam reduções mais acentuadas da temperatura dos paramentos interiores da envolvente são aquelas em que existem mais heterogeneidades de materiais (como por exemplo, no caso da interrupção do isolante térmico colocado na caixa de ar de paredes duplas, junto aos elementos estruturais) e grandes mudanças de geometria. As ligações
entre dois elementos exteriores (como por exemplo, entre duas paredes de fachada ou entre a cobertura e a parede de fachada) são as zonas mais críticas. O contorno dos vios (incluindo as caixas de estore) é também uma zona problemática. Os valores da temperatura podem ser muito baixos, embora, normalmente, numa zona estreita, junto à caixilharia. Deverá proceder-se, assim, a uma pormenorização cuidada.

2 Avaliação do Desempenho Térmico e Construtivo das Tenta-
 tivas de Correção Cerâmica pelo Exterior

Depois de alguns anos de aplicação do Regulamento das Características de Compor-
 tamento Térmico dos Edifícios (RCCTE), é necessário reflectir sobre a real eficácia térmica
das soluções de correção cerâmica que constituíram, até à data, a tentativa mais
deficiente de corrigir o problema das pontes térmicas. De modo a ilustrar o desempenho térmico das soluções com forra cerâmica,
apresentam-se, no quadro 1, alguns resultados
da simulação numérica do comportamento térmico de dois casos de ligação entre dois elementos construtivos.

Como se pode verificar pelo quadro 1, as alterações introduzidas pela forra cerâmica na temperatura mínima do paramento interior da envolvente e, consequentemente, no risco de ocorrência de condensação superficial são, extremamente, reduzidas. Conclui-se, assim,
que praticamente não existem vantagens reais, em termos térmicos ou higrotérmicos, na
colocação de forras cerâmicas, pelo exterior da estrutura de betão armado.

Para além do decepcionante desempenho térmico, as correções pelo exterior com forras cerâmicas têm:
- Originado insuficiência de apoio dos panos de parede;
- Agravado o efeito das deformações das alvenarias (fissuração, destacamentos de revestimentos, etc.);
- Criado instabilidade e até mesmo o colapso de panos exteriores de alvenaria e de forras cerâmicas (figura 1).

<table>
<thead>
<tr>
<th>Geometria</th>
<th>Temperatura superficial interior mínima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem correção</td>
<td>12,5 °C</td>
</tr>
<tr>
<td>Com correção</td>
<td>12,7 °C</td>
</tr>
<tr>
<td>Correção simples</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>13,7 °C (1)</th>
<th>14 °C (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correção simples</td>
<td></td>
</tr>
</tbody>
</table>

(1) Estes valores correspondem ao compartimento mais crítico, o inferior.
3 Estratégias de Reabilitação Térmica

Entende-se, aqui, por reabilitação térmica as intervenções de reabilitação que visem prevenir ou minimizar a ocorrência de anomalias decorrentes do fenômeno de ponte térmica (excesso de perdas térmicas, condensações superficiais, bolores), melhorando o desempenho térmico destas zonas da envolvente.

Parte-se do princípio que as intervenções não localizadas, ficando, assim, excluída a hipótese de tratamento integral da envolvente que permitiria, por exemplo, a adoção de um sistema global de isolamento térmico pelo exterior, obviamente preferível às intervenções pontuais.

No caso da correção específica das zonas de ponte térmica, interessa identificar, previamente, em que casos o efeito é realmente negativo e em função disso actuar, até porque existem muitas situações em que a adoção de certas medidas fora do âmbito construtivo (como, por exemplo, o reforço da ventilação e do aquecimento do ambiente interior) é suficiente para desagrar o problema. Como se trata de reabilitação, é forçoso ter em conta a solução construtiva já existente, o que põe em evidência duas formas de actuação diferentes, ambas baseadas em três princípios fundamentais, a utilizar separadamente ou em simultâneo (figura 2).

A substituição de elementos implica, como é evidente, uma intervenção mais profunda, com demolição e posterior reconstrução. A segunda estratégia implica uma reabilitação mais simples, mais pacífica e possivelmente mais econômica que a anterior. Ambas podem alterar o aspecto e modificar a geometria dos paramentos, o que em certas situações pode ser resolvido com soluções arquitectónicas e estéticas engenhosas.

A reabilitação térmica pode ser realizada pelo exterior ou pelo interior. Pelo exterior, poderá implicar a modificação do aspecto da fachada, a utilização de andraimes e, eventualmente, um custo elevado. A reabilitação pelo interior pode ser levada a cabo individualmente pelo proprietário do espaço interior onde se verifiquem as anomalias mas pode diminuir o espaço útil interior e condicionar o aspecto do paramento interior. A espessura do isolante

PRINCÍPIOS FUNDAMENTAIS:

- Incremento pontual da resistência térmica e/ou
- Modificação da geometria das superfícies interiores e/ou
- Permitir a continuidade do isolamento térmico

![Fig. 2 - Estratégias de reabilitação térmica](image-url)
térmico que venha a ser aplicado, não deve ser muito grande para que não introduza maiores heterogeneidades mas também não deve ser muito pequena para que garanta alguma eficácia [2]. Considera-se como mínima uma espessura de 2 cm. De uma maneira geral, para uma determinada melhoria do desempenho térmico, as intervenções de correção realizadas com isolante térmico pelo exterior necessitam de espessuras mais elevadas do que as intervenções pelo interior.

Outra questão importante relaciona-se com a extensão da área a reabilitar. Deverá proceder-se à reabilitação térmica numa área adicional para além da ponte térmica que cubra a zona de influência desta. A extensão necessária depende do tipo de ponte térmica e da solução de isolamento original. Uma intervenção que não tenha em conta este aspecto poderá resultar numa mera transferência do problema, para a zona imediatamente após a finalização brusca da correção térmica.

4 Estratégias Conjuntas de Reabili-
tação Térmica e Construtiva

Como vimos, as pontes térmicas localizam-se, sobretudo, nas ligações entre diferentes elementos construtivos da envolvente. Ou estas zonas são, com frequência, pontos onde se concentram tensões e onde é necessário compatibilizar comportamentos mecânicos (e não só) distintos colocando, assim, uma exigência particular à capacidade do projectista. Se este problema não tiver sido bem resolvido à partida, poderá revelar-se necessária uma intervenção de reabilitação que garanta o comportamento mecânico adequado da solução final.

Assim, poderemos ter de conceber soluções que ofereçam uma resposta ao problema térmico e, em simultâneo, ao problema mecânico ou construtivo. Em paredes confinadas pela estrutura reticulada em betão armado, onde não é habitual observarem-se condições de instabilidade mecânica, poderemos, também, combinar soluções de reabilitação de outras anomalias construtivas (como a fissuração, a falta de estanqueidade, a degradação de revestimentos, etc.) com soluções de reabilitação térmica, pelo exterior ou pelo interior.

Em paredes não confinadas, com tentativa de correção com forra cerâmica pelo exterior, a retoma da estabilidade da parede é o primeiro objetivo, caso esta esteja em condições de instabilidade o que, como vimos atrás, se vai tornando frequente. A retoma da estabilidade, caso não se opte pela demolição e reconstrução, poderá passar pela criação de ligações mecânicas entre os dois painéis de parede procedendo ao seu grumpeamento e pela criação de um apoio adicional (por exemplo, uma cantoneira metálica) ao nível dos eopos das lajes.

As forras cerâmicas poderão ser mantidas (por exemplo, em paredes de tijolo de face à vista) ou substituídas por outros materiais ou elementos (figura 3).
Optando por manter a forra cerâmica (garantindo, sempre, a estabilidade dos panos de parede), esta deverá ser objecto de tratamento, passando por:

- Fixá-la à estrutura através de grampeamento e da utilização de argamassas de alta aderência (à base de resinas epoxi ou resinas de poliéster);
- Desolidarizá-la da alvenaria confinante, realizando juntas flexíveis.

5 Exemplos de Soluções
Conjuntas de Reabilitação Térmica e Construtiva

Consideremos, por exemplo, a zona de ligação de uma parede exterior à laje de cobertura onde os princípios de reabilitação conjunta podem funcionar com perspetivas de sucesso (figuras 4 e 5). Admitiremos que existe uma forra cerâmica no paramento exterior da platinhada. A figura 4 ilustra a hipótese dessa forra ser mantida, enquanto a figura 5 prevê a hipótese de se proceder à sua demolição.

Manutenção da forra cerâmica e aplicação de isolante térmico pelo interior

Reabilitação térmica pelo interior

Pormenores da utilização de placas de isolante térmico aplicadas na superfície interior de parede e tecto.

Espessura da correcção = 0,03 m

Reabilitação construtiva

Pormenores da colocação de grampos

Criação de uma junta flexível de desolidarização

Fig. 4 – Reabilitação térmica e construtiva com manutenção da forra cerâmica
Substituição da forra cerâmica utilizando sistemas de isolamento térmico pelo exterior aplicados pontualmente

Permitindo:
- A liberdade de deformações da laje de cobertura com a realização de uma junta de dessolidarização,
- O reforço da correção térmica.

Aplicação de revestimentos de isolamento térmico pelo exterior que protegem a junta de dessolidarização criada e ocultam fissuração eventualmente existente.
Espessura da correção = 0,06/0,03 m

Perspectiva do aspecto exterior da correção.

Fig. 5 – Reabilitação térmica e construtiva com substituição da forra cerâmica

6 Conclusão

No presente documento apresentou-se, de forma muito sumária, um trabalho levado a cabo na PFS, sobre reabilitação térmica e construtiva de zonas de ponte térmica em edifícios de construção exterior. Provou-se ser possível e desejável proceder à reabilitação de zonas sensíveis, mesmo que de forma localizada, podendo encontrar-se soluções de reabilitação térmica e construtiva que permitam um bom enquadramento na envolvente existente.
A reabilitação construtiva pode ser complexa e o seu sucesso depende, largamente, por um lado, da identificação precisa das causas das anomalias e por outro, do domínio das tecnologias de reabilitação disponíveis.

Referências