city as well. I sincerely wish every participant a happy stay in Nanjing’s golden autumn and the AR2009 Conference a complete and great success!

Dr. Qian Guochao,
Deputy Director
Jiangsu Provincial Communications Department

Index

Chapter 1 Performance Evaluation and Design

Asphalt-Rubber 40 Years of Use in Arizona
A. Zareh, G. B. Way ................................................................. 25

Treatment Performance Capacity – A Tool to Predict the Effectiveness of Maintenance Strategies
J. B. Sousa, G. Way, J. Pais ............................................................. 47

Optimum Timing for Pavement Treatment Application
J. B. Sousa, G. Way ................................................................. 73

Evaluation of New Generation of Gap Graded Asphalt Rubber Mixtures
R. Cao ...................................................................................... 97

Research on Mix Design Method and Application of Asphalt Rubber Open-graded Friction Course
Bai Q., Qian Z., Cao R. ................................................................. 109

Performance of California Rubberized Hot Mix Asphalt High Binder Open Graded Mixes
G. Way, K. Kaloush, G. Hicks, M. Stroup-Gardner, S. Shatnawi ......................... 119

Implementation of Asphalt-Rubber Mixes into the Mechanistic Empirical Pavement Design Guide
M. C. Rodezno, K. E. Kaloush ....................................................... 137

A Fracture Energy Approach to Model the Thermal Cracking Performance of Asphalt Rubber Mixtures
A. Zborowski, K. E. Kaloush ....................................................... 153
4 Years of Performance of A Test Track Using Crumb Rubber Asphalt And Other Modifiers
G. Martinez, B. Caicedo, L. Celis, D. Gonzáles .............................................. 171

Reflection Cracking and Permanent Deformation of Overlays with Recycled Tire Rubber and Polymer Modifiers Under HVS Loading
P. Ullidtz, D. Jones, R. Wu, J. Harvey .................................................... 189

Research on the low-temperature Cracking Resistance of Semi-flexible Pavement with Waste Rubber Powder
S. Hu, Y. Yang, Q. Ding, C. Huang, S. Huang ........................................... 209

Chapter 2 Mix Properties

Lab Simulation of Reflective Cracking By Load
Yu B., Cao B., Yang J. ........................................................................ 223

Characterization of HMA Mixtures containing High Reclaimed Asphalt Pavement Content With Crumb Rubber Additives
L. N. Mohammad, S. B. Cooper, Jr. ..................................................... 233

Evaluation of Alternative Laboratory Aging Methods of Asphalt Rubber Friction Courses
J. X. Reed, K. P. Biligiri, K. E. Kaloush ............................................. 255

Evaluating Permanent Deformation in Asphalt Rubber Mixtures
L. Fontes, G. Trichés, J. Pais, P. Pereira ............................................ 269

Improvement of Moisture Damage of CRM-modified Asphalt Concretes in Korea

The Production and Placement of Asphalt Rubber Hot Mix Using Warm Mix Asphalt Technology
J. V. Kirk, J. Reed, J. Reed ............................................................... 291

Research on The Gradation of AR Mixtures Based On GTM
Li Z., Song X., Zhou W., Tan Y. .......................................................... 303

Laboratory Assessment of Workability, Performance and Durability of Rubberised Asphalt Mixtures
I. Widyanatmoko, R. Elliott, J. Grenfell, G. Airey, A. Collop, S. Waite ........ 317

Study of the Rutting in Asphalt Mixtures by Addition of Rubber
F. R. Lizcano, H. Rondón, A. S. Figueroa ........................................... 329

Effect of Cryogenic and Ambient Crushed Rubber on the Mechanical Properties of Hot Mix Asphalts
S. Neto, M. Farias, J. C. Pais ........................................................... 341

Influence of Digestion Time on the Mechanical Properties of Gap-graded Hot Mixes Produced with Asphalt Rubber Binders
S. Neto, M. Farias, J. C. Pais ........................................................... 355

Laboratory Performance of Asphalt Rubber Mixtures
L. Fontes, G. Trichés, J. Pais, P. Pereira, M. Minhoto ................................ 369

Laboratory Evaluation of Asphalt Rubber Gap Graded Mixture in Sweden
K. E. Kaloush, T. Nordgren, K. P. Biligiri, W. A. Zeiada, M. C. Rodezno, M. I. Soulman, J. Reed ................................................................. 387

Asphalt Rubber Mixtures Susceptibility to Moisture Damage
K. E. Kaloush, A. Nadkarni, W. Zeiada, P. Burch, C. Dimitroplos .............. 401

Testing Asphalt-rubber According to European Standards and its use in the Czech Republic
J. Kudrna, O. Dašek ................................................................. 415
Chapter 3 Binder Properties

Comparison of the Properties of Laboratory and Field-Prepared CRM Binders
J. Shen, S. Amirkhanian ........................................................................... 437

Study on Hot Storage Stability of Reclaimed Rubber Modified Asphalt

Asphalt Rubber With Temporarily Decreased Viscosity
S. Biro, A. Geiger, J. Kay ..................................................................... 461

Evaluation of Current Modified Asphalt Binders Using the Multiple Stress Creep Recovery Test
C. Thodesen, S. Biro, J. Kay .................................................................. 475

Fuel Resistance of Crumb Rubber Modified Asphalt Binders
G. Polacco, F. Merusi, S. Filippi, D. Biondi, F. Giuliani .......................... 493

Characteristics of Rubberised Bitumen Blends
I. Widyatmoko, R. Elliott, J. Grenfell, G. Airey, A. Collop, S. Waite ........... 505

Mechanical properties of HMA mixes using crumb-rubber modified binders
F. Pilati, A. Faxina, A. Furlan, G. Fabbri, A. Gigante ................................ 519

Fatigue-Related Properties of Crumb Rubber Modified Asphalt Binders
F. Giuliani, F. Merusi, A. Montepara ...................................................... 541

Influence of the Bitumen Properties on the Functional and Rheological Behaviour of Asphalt Rubber Binders
J. Peralta, H. Silva, A. Machado, J. Pais ................................................... 555

Rheological Changes in Bitumen Caused by Aging and by the Interaction with Rubber
J. Peralta, H. Silva, A. Machado, J. Pais ................................................... 579

Chapter 4 Case Studies

The application of Semi-flexible Pavement with Asphalt Rubber on Heavy Traffic Road
T. Ling, Wu D., Wei X., Z. Zhao, Chu H., Li C. ........................................ 619

Asphalt Rubber - a New Concept for Asphalt Pavements in Sweden.
T. Nordgren, L. Preinfalk ...................................................................... 633

The Use of Asphalt Rubber in a Motorway Section Pavement Rehabilitation in Portugal
E. Fung, D. Baptista ............................................................................. 647

Crumb Rubber From Scrap Tyres For Use in Asphalt pavements in the UK
R. Hewson ......................................................................................... 659

Chapter 5 Function, Environmental and other Aspects

Noise Characteristics and Field Performance of Five Different Wearing Courses in Arizona
D. Carlson, G. Way, A. Zareh, K. Kaloush, K. Biligiri ............................ 693

Asphalt-Rubber Open Graded Friction Course Reduces Noise-The Quiet Pavement Program
A. Zareh, D. Carlson, G. Way ................................................................. 711

Development of Innovative Pavement Types to Reduce Traffic Noise
J. Haberl ............................................................................................. 725
Field Investigation of Tire/Pavement Noise and Durability for Asphalt Pavements with and without Asphalt Rubber
Q. Lu, E. Kohler, A. Ongel, J. Harvey ................................................... 737

Environmental, Energy Consumption and CO₂ Aspects of Recycled Waste Tires Used in Asphalt-Rubber
J. Sousa, G. Way, D. Carlson ............................................................ 755

Promoting Asphalt Rubber Application through Education
D. Cheng, G. Hicks, A. Johnson, S. Shatnawi .......................................... 767

Analysis of Environmental Sustainability in The Rehabilitation of Existing Pavements Using Asphalt Rubber Hot Mixes
I. Antunes, A. Murachelli .................................................................. 777

Chapter 6 Evaluation and Design of Chip Seals

Asphalt Rubber Chip Seal Construction Evaluation
J. Rizzutto .................................................................................... 795

The Development of a Design Procedure and Usage Criteria for Hot Applied Chip Seal Applications
J. Smith ..................................................................................... 813

Chapter 7 Terminal Blend Binders

Properties of HMA Mixtures Produced with Polymer-Modified and Tire Rubber-Modified Asphalt Binders
P. Sebaaly, H. Sebaaly, E. Hajj ....................................................... 831

Pavement Monitoring Results After Seven Years of Using Crumb Rubber Modified Asphalt in Brazil
R. Barros ..................................................................................... 847

Studies on Adhesive Performance of Waste Crumb Rubber Modified Asphalt Mixtures
Wu S., Han J .............................................................. 865

Rheological and Engineering Properties of Rubberized Asphalt Concrete Mixtures Containing Warm Mix Asphalt Additive
F. Xiao, S. N. Amirkhanian, C. Akisety, W. Zhao ............................... 873

Stability Assessment Through Solubility and Rheological Measurements of GTR-modified Bitumen
A. Pérez-Lepe, A. Páez ................................................................. 885

Comparison Between Various Bituminous Binders Modified With Crumb Tyre Rubber
D. Lo Presti, N. Memon, G. Airey, J. Grenfell ................................... 903

Laboratory Performance Evaluation Of GTR-modified Sma Mixtures With Fractionated Rap
W. Vavrik, S. Carpenter, S. Gillen, F. Garrott .................................... 929

Steady Shear Properties of Crumb Rubber Modified Bitumen
B. Saha, S. Maheswari, P. Senthivel, N. Choudury and J. Krishnan ....... 941

Chapter 8 Invited papers on related aspects

Experimental Study on Strength Developing Law of Epoxy Asphalt Mixture during its Curing Reaction
Huang W., Chen L., Qian Z ............................................................ 955

Asphalt Rubber: policy disclosure in Italy
F. Canestrari, E. Pasquini, F. A. Santagata, I. Antunes ......................... 967

De-icing Characteristics of Rubber Concrete Pavements
F. Milani, H. B. Takallou ............................................................. 989
ABSTRACT. Asphalt rubber mixtures are one of the most promising techniques to extend the service life of asphalt pavement overlays. Asphalt rubber binder is composed of crumb rubber from reclaimed tires and conventional asphalt. The asphalt rubber binder can be obtained through wet process in two different systems: tire rubber-modified asphalt binder (produced at industrial plants) and continuous blending (produced in asphalt plants). This study presents a laboratory evaluation of asphalt rubber mixtures produced with different asphalt rubber binders, using gap and dense gradations. The mechanical behaviour of the mixtures studied was established through several laboratory tests (stiffness, fatigue and permanent deformation). Moreover, the morphologies of the crumb rubber and of the asphalt rubber binder were analysed through scanning micrographs. The rheology of the asphalt rubber binder was characterised in order to predict the mechanical behaviour of asphalt rubber mixtures.

KEYWORDS: Asphalt Rubber, Fatigue, Permanent Deformation
1. Introduction

The disposal of scrap tires is a serious environmental problem all over the world. In order to minimize its impact, crumb rubber from scrap tires have been used in the asphalt modification resulting the asphalt rubber binder, that have contributed to enhance the structural and functional behaviour of road pavements.

The objective of this paper is to evaluate the laboratory performance of asphalt rubber mixtures, produced using the wet process, in terms of fatigue life and permanent deformation. Additionally, asphalt rubber binders were analysed in terms of rheology and morphology.

Two gap-graded and two dense graded asphalt rubber mixtures were produced with different types of asphalt rubber binders (continuous blend and tire rubber-modified asphalt binder). Continuous blend asphalt rubber binder was produced in laboratory with conventional 35/50 pen asphalt and crumb rubber by the ambient and cryogenic processes. Tire rubber-modified asphalt binder was produced with 50/70 pen asphalt and crumb rubber by the ambient process, with two rubber percentages, 15% and 20%. A dense graded conventional mixture, produced with 50/70 pen asphalt, was used as control mixture.

The mechanical tests comprised the following:

- Dynamic modulus and fatigue tests using a four-point bending test;
- Permanent deformation thorugh Repetitive Simple Shear Test at Constant Height (RSST-CH).

2. Materials

2.1. Aggregate gradations

The dense graded asphalt rubber mixture was specified in accordance with type IV of the Asphalt Institute (AI) mix and prepared with asphalt rubber binder from continuous blending (35/50 pen asphalt and ambient crumb rubber) and tire rubber-modified binder with 15% of rubber. The gap gradation used to produce the asphalt rubber mixtures followed the Caltrans (California Department of Transportation) specifications. The mixtures were prepared with asphalt rubber binder from continuous blending (35/50 pen asphalt and cryogenic crumb rubber) and tire rubber-modified binder with 20% of rubber. The dense gradation used to prepare the control mixtures with conventional asphalt (50/70 pen) was the “DNIT Grade C”, specified by the Brazilian Road Department. The sieve analyses followed the ASTM C 136 (1996) test method and the results are presented in Table 1 and Figure 1.

<table>
<thead>
<tr>
<th>Sieve size</th>
<th>% passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch/n&quot;</td>
<td>mm</td>
</tr>
<tr>
<td>3/4&quot;</td>
<td>19,0</td>
</tr>
<tr>
<td>1/2&quot;</td>
<td>12,7</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>9,5</td>
</tr>
<tr>
<td>n° 4</td>
<td>4,8</td>
</tr>
<tr>
<td>n° 8</td>
<td>2,4</td>
</tr>
<tr>
<td>n° 30</td>
<td>0,6</td>
</tr>
<tr>
<td>n° 50</td>
<td>0,3</td>
</tr>
<tr>
<td>n° 100</td>
<td>0,15</td>
</tr>
<tr>
<td>n° 200</td>
<td>0,075</td>
</tr>
</tbody>
</table>

Identification of the morphology of the crumb rubbers was conducted using a Scanning Electron Microscope (SEM), LEICA Cambridge S 360. The images in Figure 3 (50x magnification) show the differences in morphology between the continuous blend and tire rubber-modified binders.
magnification) indicate that the morphology of the particles from ambient and cryogenic processes is completely different.

Figure 2. Crumb rubber gradations

Figure 3. Morphology of the crumb rubbers

The surface analysis of the crumb rubber obtained by the ambient process presents an irregular structure with several sizes and shapes, with rubber agglomerates, the smallest particles of which are adhered, having a spongy appearance. The morphology of the cryogenic crumb rubber presents a fluffy and uniform grain. The specific surface was calculated with proportions of 19.27 m²/kg for ambient crumb rubber and 13.61 m²/kg for cryogenic crumb rubber.

2.3. Physical properties of asphalts

Two conventional asphalts were tested in this study. The 50/70 pen (named as AB) was used to produce the control mixture and to produce the tire rubber-modified binder. The 35/50 pen asphalt (AP) was used to produce the continuous blending asphalt rubber binder.

The tire rubber-modified binders were produced at an industrial plant, herein named as TB1 (20% of crumb rubber) and TB2 (15% of crumb rubber). The continuous blending asphalt rubber binders CB1 (with cryogenic rubber) and CB2 (with ambient rubber) were produced as follows: 21% of cryogenic crumb rubber; 90 minutes of digestion time; 180°C of digestion temperature.

The physical properties of the asphalts were evaluated in laboratory in terms of: softening point; penetration; resilience; apparent viscosity (Brookfield viscometer). The hardening of the asphalts due to oxidation was also tested through the Rolling Thin-Film Oven Test (RTFOT). The asphalt rubber binders tested followed the specifications of the ASTM D 6114 (1997), type II. The test results are presented in Table 2.

Table 2. Asphalt properties

<table>
<thead>
<tr>
<th>Test Standard</th>
<th>AB</th>
<th>AP</th>
<th>TB1</th>
<th>TB2</th>
<th>CB1</th>
<th>CB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration 25°C, 100g, 5s (0.1 mm)</td>
<td>ASTM D 2196</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Softening point, ring and ball (°C)</td>
<td>ASTM D 36</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Apparent viscosity (cP), 175 °C</td>
<td>ASTM D 2196</td>
<td>127</td>
<td>175</td>
<td>2179</td>
<td>1644</td>
<td>2246</td>
</tr>
<tr>
<td>Resilience (%)</td>
<td>ASTM D 5329</td>
<td>0</td>
<td>9</td>
<td>28</td>
<td>33</td>
<td>49</td>
</tr>
<tr>
<td>RTPOT 163°C, 85 minutes</td>
<td>ASTM D 2872</td>
<td>22.3</td>
<td>27.7</td>
<td>28.8</td>
<td>25.3</td>
<td>15.5</td>
</tr>
<tr>
<td>Change of mass (%)</td>
<td>ASTM D 2872</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Softening point (°C)</td>
<td>ASTM D 2196</td>
<td>4.3</td>
<td>5.0</td>
<td>1.0</td>
<td>2.9</td>
<td>11.2</td>
</tr>
<tr>
<td>Penetration 25°C, 100g, 5s (0.1 mm)</td>
<td>ASTM D 2872</td>
<td>22.3</td>
<td>27.7</td>
<td>28.8</td>
<td>25.3</td>
<td>15.5</td>
</tr>
<tr>
<td>Retained penetration (%)</td>
<td>ASTM D 2872</td>
<td>43.3</td>
<td>84.0</td>
<td>72.0</td>
<td>60.2</td>
<td>92.2</td>
</tr>
<tr>
<td>Apparent viscosity (cP), 175 °C</td>
<td>ASTM D 2872</td>
<td>5350</td>
<td>1962</td>
<td>3925</td>
<td>8813</td>
<td></td>
</tr>
<tr>
<td>Resilience (%)</td>
<td>ASTM D 5329</td>
<td>39</td>
<td>36</td>
<td>56</td>
<td>56</td>
<td>52</td>
</tr>
</tbody>
</table>

* Brookfield viscometer, spindle 27, 20 rpm.

The test results showed that the modified asphalts were significantly more viscous than the conventional ones. The asphalt rubber binders TB1 and TB2 seemed to be similar, except for the fact that TB1 presented higher viscosity (more rubber content) and that TB2 had more elasticity. The differences between CB1 and CB2 were more evident. CB1 had lower viscosity and a higher softening point. The low viscosity of the continuous blending in relation to tire rubber-modified binder can be explained by the fact that it was produced with more rigid asphalt than TB. Asphalt rubber binders CB (1 and 2) presented a high softening point than TB (1 and 2), what may indicate that mixtures produced with CB would be highly resistant to permanent deformation. In general, asphalt rubber binders are not very sensitive to hardening.

2.4. Compatibility of asphalt rubber binder systems

The compatibility of asphalt/polymer systems, such as asphalt rubber binder, may be
defined in several ways (Briul, 1996). It may be in terms of the achievement of a particular morphology, i.e. the structural arrangement of the polymer (rubber) particles, chains or groups within the asphalt matrix. A reaction is claimed to occur when the asphalt and the rubber particles interact. Observation suggests that particles seem gel-coated (Yun Kirk et al., 1998). Compatible systems usually have superior rheological characteristics, aging and stability properties than those of incompatible systems at the same polymer level (Holleran et al., 2001).

Despite the fact that ambient crumb rubber, due to the greater surface area, can interact with asphalt more easily and quickly than cryogenic asphalt, the compatibility of the system still depends on the other parameters, such as the asphalt base, the amount of the crumb rubber and the proportion of asphalt light fraction.

The SEM analysis was used to evaluate the compatibility of the asphalt rubber binder system through the interaction with the crumb rubber and the conventional asphalt after blending. Figures 4 and 5 illustrate the asphalt rubber binder microstructures (100x magnification). In both, the systems showed to be compatible.

![CB1 and CB2 microstructure](image1)

**Figure 4. Microstructure of asphalts rubber binders CB1 and CB2**

![TB1 and TB2 microstructure](image2)

**Figure 5. Microstructure of asphalts rubber binders TB1 and TB2**

The configuration used in this study to produce continuous blending asphalt rubber binder resulted in a good interaction and, apparently, the 35/50 pen asphalt reacted better with cryogenic than with ambient rubber (Figure 4). The tire rubber-modified binder system allows blending or combining asphalt and crumb rubber together to produce a long lasting product. Thus asphalt rubber binder produced through this system resulted in a compatible system and in a perfect interaction between asphalt (50/70 pen) and ambient and cryogenic rubbers (Figure 5).

### 2.5. Rheology of asphalts rubber binder

Asphalt is a viscoelastic material, meaning that it simultaneously shows the behaviour of an elastic material and that of a viscous material. The relationship between these two properties is used to measure the capability of the binder to resist permanent deformation and fatigue cracking. A binder needs to be stiff and elastic to resist permanent deformation; to resist fatigue cracking, the binder needs to be flexible and elastic (FHWA, 1994).

The rheology tests with rheometers are used to characterize the viscous and elastic behaviour of the asphalt. It is accomplished by measuring the viscous and elastic properties of a thin asphalt sample, between an oscillating and a fixed plate. As the force (shear stress) is applied to the asphalt by the spindle, the rheometer measures the response (shear strain) of the asphalt to the force. If the material was perfectly elastic, the response would coincide immediately with the applied force, and the time lag between the two would be zero. A perfectly viscous material would have a larger time lag between load and response.

The relationship between the applied stress and the resulting strain quantifies both types of behaviour, and provides the necessary information to calculate two important asphalt binder properties: the complex shear modulus \( G^* \) and the phase angle \( \delta \). The complex shear modulus, \( G^* \), represents the total deformation resistance when loaded or sheared and it is defined as the ratio of maximum shear stress \( \tau_{\text{max}} \) to maximum shear strain \( \varepsilon_{\text{max}} \), expressed as follows:

\[
G^* = \frac{\tau_{\text{max}}}{\varepsilon_{\text{max}}} \tag{1}
\]

The phase angle, \( \delta \), represents the relative distribution between the elastic response and the viscous response to loading. It indicates the delayed strain response, or lag, of the binder to the applied shear stress, during steady state conditions (Roberts et al., 1996). For a perfectly elastic material, \( \delta \) is zero, and the whole deformation is temporary, whereas for a viscous material, \( \delta \) approaches 90°, and the deformation is permanent.

The Superpave specifications define the rutting factor, \( G^*/\sin \delta \), that represents the maximum temperature that a binder can reach without permanent deformation. The fatigue cracking factor is \( G^* \cdot \sin \delta \).

In this study, the rheological characterization of asphalt rubber binders was performed to estimate the mechanical behaviour of the material. The rheological data were collected using a parallel plate rheometer (Rheological StressTech HR) (sample with a diameter of 40 mm and
a thickness of 0.8 mm) which was capable of measuring the complex shear modulus and the phase angle for different stresses and strain rates (Figure 6). In relation to the asphalt rubber binder obtained by the continuous blending (CB) and through the tire rubber-modified binder processes (TB), the tests were conducted at 20°C (intermediate service temperature) and 60°C (high service temperature) with frequencies between 1 to 10 Hz. Figures 7 and 8 present the $G^*\sin\delta$, at 60°C and $G^*\sin\delta$, at 20°C. The phase angle is presented in Figure 9.

Figure 6. Rheometer and parallel plates

Figure 7. $G^*\sin\delta$ at 60°C

Figure 8. $G^*\sin\delta$ at 20°C

Figure 9. Asphalts rubber binder phase angles

The results of the rheology tests are an indicator of the properties of the asphalt rubber binder and can be used to predict the mixture performance. The results obtained allow concluding that, at high temperatures, the asphalt rubber binder CB1 and CB2 should acquire higher resistance to permanent deformation than TB1 and TB2, due to higher values of $G^*$ and lower values of $\delta$. Furthermore, for intermediate temperatures, CB1 and CB2 also present the properties of a soft elastic material (lesser $G^*\sin\delta$ and lower $\delta$), that probability would improve the fatigue properties.

The complex modulus of asphalt, at many levels of temperature and load time-rate, can be determined by a master curve constructed at a reference temperature (20°C). Master curves are constructed using the principle of time-temperature superposition.
To construct the master curves of asphalt rubber binder, obtained by graphic translation of the isotherms aligning frequencies of same value, the rheology tests were conducted under five temperatures (20°C, 30°C, 40°C, 50°C and 60°C) with applied frequencies between 0.0001 to 100 Hz. The master curves, at a reference temperature of 20°C, are presented in Figure 10. The results show that CB1 and CB2 are more elastic than TB1 and TB2, what can be verified by the slope of the curves (a horizontal curve represents a purely elastic behaviour). TB1 would be more susceptible to temperature variations.

**Figure 10. Master curves of the asphalt rubber binders**

**2.6. Mixtures**

Gap and dense graded asphalt rubber mixtures were produced using continuous and tire rubber-modified binder. A conventional dense graded mixture was produced with conventional asphalt 50/70 pen, as the control mixture. These mixtures were produced as follows:

- MCB1 - gap graded asphalt rubber mixture; Caltrans ARHM-GG gradation; 8,0% of asphalt content (continuous blending asphalt rubber binder, produced in laboratory, asphalt base 35/50 pen, 21% of cryogenic rubber content, 180°C digestion temperature; reaction time of 90 minutes), and 6,0% of void content;

- MCB2 - dense graded asphalt rubber mixture; AI mix type IV gradation; 7,0% of asphalt content (continuous blending asphalt rubber binder, produced in laboratory, asphalt base 35/50 pen, 21% of ambient rubber content, 180°C digestion temperature; reaction time of 90 minutes) and 5,0% of void content;

- MTB1 - gap graded asphalt rubber mixture, Caltrans ARHM-GG gradation; 8,5% of asphalt content (tire rubber-modified binder, produced at industrial plant, asphalt base 50/70 pen, 20% of ambient rubber content) and 5,0% of void content;

- MTB2 - dense graded asphalt rubber mixture, AI mix type IV gradation; 7,0% of asphalt content (tire rubber-modified binder, asphalt base 50/70 pen, produced at industrial plant, 15% of ambient rubber content) and 5,0% of void content;

- MCO - dense graded conventional mixture, DNIT Grade “C” gradation; 5,0% of asphalt content (50/70 pen) and 4,0% of void content.

Table 3 presents a summary of the studied mixtures, in which the aggregate gradation, binder content, binder type and void content can be observed.

**Table 3. Asphalt mixtures properties**

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Aggregate gradation</th>
<th>Binder content (%)</th>
<th>Binder type</th>
<th>Void content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB1</td>
<td>Caltrans, gap</td>
<td>8,0</td>
<td>Continuous blending, 35/50, 21% rubber</td>
<td>6,0</td>
</tr>
<tr>
<td>MCB2</td>
<td>AI, dense</td>
<td>7,0</td>
<td>Continuous blending, 35/50, 21% rubber</td>
<td>5,0</td>
</tr>
<tr>
<td>MTB1</td>
<td>Caltrans, gap</td>
<td>8,5</td>
<td>Tire rubber modified binder, 50/70, 20% rubber</td>
<td>6,0</td>
</tr>
<tr>
<td>MTB2</td>
<td>AI, dense</td>
<td>7,0</td>
<td>Tire rubber modified binder, 50/70, 15% rubber</td>
<td>5,0</td>
</tr>
<tr>
<td>MCO</td>
<td>DNIT, dense</td>
<td>5,0</td>
<td>50/70</td>
<td>4,0</td>
</tr>
</tbody>
</table>

The mixtures were compacted with a steel roller in a mould (75x49x8 cm³). The compacted slabs were sawed and cored with the appropriate dimension for each type of test.

**3. Mechanical tests**

**3.1. Dynamic modulus and fatigue life**

Four point bending tests were conducted to evaluate the dynamic modulus and fatigue life. Beam specimens of 38 cm long by 5 cm thick by 6,3 cm wide were used in frequency sweep test to measure the dynamic modulus and the phase angle when subjected to seven loading frequencies (10; 5; 2; 1; 0,5; 0,2; 0,1 Hz), at 20°C.

Fatigue tests were conducted according to the AASHTO TP8/94, at 20°C and at 10 Hz. Fatigue failure was assumed to occur when the dynamic modulus was reduced to 50 percent of the initial value. The tests were conducted at three strain levels of approximately 200, 400 and 800 microstrains, with three repetitions for each level. The test results considered bottom-up cracking to determine an empirical fatigue relationship of the simple power formula (Monismith et al., 1971) shown as:

\[ N = a \left( \frac{1}{e} \right)^b \]
where:

\[ N = \text{number of repetitions until failure}; \]
\[ \varepsilon = \text{tensile strain applied (10)}; \]
\[ a \text{ and } b = \text{experimentally determined coefficients}. \]

The dynamic modulus of the mixtures for all the frequencies applied is shown in Figure 11 and the phase angle of the mixtures is depicted in Figure 12.

The results in Figure 11 show that the MCB2 has a higher dynamic modulus than the other mixtures, and at 10 Hz, this value is similar to MCO. It is noticed that the tire rubber-modified binder mixtures (MTB1 and MTB2) presented lower dynamic modulus than the continuous blend mixtures.

In Figure 12, the results of the phase angle, an indicator of viscoelastic properties of the mixtures, indicate that MCO is more viscous than asphalt rubber mixtures (continuous blend and tire rubber-modified binder), what represents an improvement in the elastic response and, therefore, a better fatigue performance of the asphalt rubber mixtures.

Table 4 shows the experimental parameters of fatigue laws of the mixtures, according to Equation 2, with the strain expressed in terms of microstrains. Figure 13 presents the results of the fatigue curves.
According to Figure 13, asphalt rubber mixtures have an enhanced fatigue performance when compared to conventional mixtures. The tire rubber-modified binder mixtures presented higher fatigue life than the continuous blend mixtures. However, it is important to consider that MTB1 has more asphalt content (8.5%) than MBC1 (8.0%). For tire rubber-modified binder mixtures, it was also observed that the use of dense gradation (MTB2, 7.0% of asphalt content) improved the fatigue performance of the mixture better than the gap gradation (MTB1, 8.5% of asphalt content). The same occurred with continuous blend mixtures, in which the MCB2 (7.0% of asphalt content) presented a more extended fatigue life than MCB1 (8.0% of asphalt content). It was observed that lower air void contents improved the fatigue performance of all asphalt rubber mixtures.

The rheology results, in terms of $G^*/\sin\delta$, were confirmed by the fatigue tests. The greater $G^*/\sin\delta$, the longer fatigue life, as can be observed in Figure 14. Only the conventional mixture (MCO) does not follow the trend presented by the asphalt rubber mixtures.

The permanent deformation results (Figure 15) give evidence that the asphalt rubber mixtures are more resistant than the conventional mixture. MCB1 showed a better performance than the other mixtures. The resistance to permanent deformation of MCB1 is justified by the greater softening point and large elastic recovery presented by the CB1 asphalt rubber binder. The gap graded gradation in continuous blending mixtures promoted an enhanced resistance to permanent deformation, associated with an excellent interaction between cryogenic rubber and 35/50 pen to resist rutting. In the case of the tire rubber-modified binder mixtures, MTB2, with less asphalt and voids content and dense gradation, it performed better than MTB1.

The rheology results, in terms of $G^*/\sin\delta$, were confirmed by the permanent deformation tests once the greater $G^*/\sin\delta$, the greater the resistance to permanent deformation, as it can be observed in Figure 16.
4. Conclusions

The primary aim of this work was to evaluate the mechanical properties of asphalt rubber mixtures when compared to conventional ones. The mechanical tests included dynamic modulus, fatigue cracking and permanent deformation.

From the SEM analysis it can be observed that cryogenic and ambient crumb rubbers have different morphologies. While cryogenic has an angular smooth and cracked appearance surface, ambient has a porous surface. The SEM morphology of asphalts rubber binder systems also showed that all binders result in compatible systems. These analyses are significant and helpful to make a decision when evaluating the digestion time requested to produce asphalt rubber binders.

Asphalt rubber binders were characterised rheologically to estimate the mechanical behaviour of the material, following the SUPERPAVE parameters $G^*\sin\delta$ and $G^*/\sin\delta$, which are good indicators of fatigue performance and resistance to permanent deformation. However, the mixture variables such as asphalt and void content and type of gradation also need to be considered in the prediction.

The continuous blend mixtures presented higher dynamic modulus than tire rubber-modified binder. The MCB2 presented a higher dynamic modulus and, at 10 Hz, the value was similar to that of conventional mixtures. The results of the phase angle indicated that the conventional mixture is more viscous than asphalt rubber mixtures independently of the process used, what represents an improvement in its elastic response and, consequently, a better fatigue performance.

Fatigue tests showed that asphalt rubber mixtures exhibit significantly more fatigue performance than conventional mixtures. Tire rubber-modified binder mixtures presented a higher fatigue life than continuous blend mixtures.

The results of permanent deformation tests demonstrated that asphalt rubber mixtures were more resistant to the development of plastic shear strains than the conventional mixture. Although similar, the MCB1 presented a better performance, followed by the MTB2. This behaviour was also predicted through rheology tests.

The most important conclusion drawn from this study states that asphalt rubber mixtures present better mechanical properties and a superior performance than conventional mixtures, what allows asphalt pavement layers have a more extended life cycle.

Acknowledgements

The authors would like to thank the companies that supplied the materials used in this study: Greca Asfaltos, Cepsa Portuguesa, Bezerras Ltda. The first author was supported by the Programme Alban, the European Union Programme of High Level Scholarships for Latin America, scholarship nº E04D040507BR between 2004 and 2006. Current, the first author is supported by CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

5. References

Brule B., “Polymer modified asphalt cements used in the road construction industry, basic principles”, Transportation Research Record no. 1535, Transportation Research Board, Washington D.C., 1990.


