Preface

These multiple volumes (LNCS volumes 10404, 10405, 10406, 10407, 10408, and 10409) consist of the peer-reviewed papers from the 2017 International Conference on Computational Science and Its Applications (ICCSA 2017) held in Trieste, Italy, during July 3–6, 2017.

ICCSA 2017 was a successful event in the ICCSA conference series, previously held in Beijing, China (2016), Banff, Canada (2015), Guimarães, Portugal (2014), Ho Chi Minh City, Vietnam (2013), Salvador, Brazil (2012), Santander, Spain (2011), Fukuoka, Japan (2010), Suwon, South Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia (2007), Glasgow, UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal, Canada (2003), (as ICCS) Amsterdam, The Netherlands (2002), and San Francisco, USA (2001).

Computational science is a main pillar of most present research as well as industrial and commercial activities and plays a unique role in exploiting ICT innovative technologies. The ICCSA conference series have been providing a venue to researchers and industry practitioners to discuss new ideas, to share complex problems and their solutions, and to shape new trends in computational science.

Apart from the general tracks, ICCSA 2017 also include 43 international workshops, in various areas of computational sciences, ranging from computational science technologies to specific areas of computational sciences, such as computer graphics and virtual reality. Furthermore, this year ICCSA 2017 hosted the XIV International Workshop on Quantum Reactive Scattering. The program also features three keynote speeches and four tutorials.

The success of the ICCSA conference series in general, and ICCSA 2017 in particular, is due to the support of many people: authors, presenters, participants, keynote speakers, session chairs, Organizing Committee members, student volunteers, Program Committee members, international Advisory Committee members, international liaison chairs, and various people in other roles. We would like to thank them all.

We would also like to thank Springer for their continuous support in publishing the ICCSA conference proceedings.

July 2017

Giuseppe Borruso
Osvaldo Gervasi
Bernady O. Apduhan
Welcome to Trieste

We were honored and happy to have organized this extraordinary edition of the conference, with so many interesting contributions and participants coming from more than 46 countries around the world!

Trieste is a medium-size Italian city lying on the north-eastern border between Italy and Slovenia. It has a population of nearly 200,000 inhabitants and faces the Adriatic Sea, surrounded by the Karst plateau.

It is quite an atypical Italian city, with its history being very much influenced by belonging for several centuries to the Austro-Hungarian empire and having been through several foreign occupations in history: by French, Venetians, and the Allied Forces after the Second World War. Such events left several footprints on the structure of the city, on its buildings, as well as on culture and society!

During its history, Trieste hosted people coming from different countries and regions, making it a cosmopolitan and open city. This was also helped by the presence of a commercial port that made it an important trade center from the 18th century on. Trieste is known today as a ‘City of Science’ or, more proudly, presenting itself as the ‘City of Knowledge’, thanks to the presence of several universities and research centers, all of them working at an international level, as well as of cultural institutions and traditions. The city has a high presence of researchers, more than 35 per 1,000 employed people, much higher than the European average of 6 employed researchers per 1,000 people.

The University of Trieste, the origin of such a system of scientific institutions, dates back to 1924, although its roots go back to the end of the 19th century under the Austro-Hungarian Empire. The university today employs nearly 1,500 teaching, research, technical, and administrative staff with a population of more than 16,000 students.

The university currently has 10 departments: Economics, Business, Mathematical, and Statistical Sciences; Engineering and Architecture; Humanities; Legal, Language, Interpreting, and Translation Studies; Mathematics and Geosciences; Medicine, Surgery, and Health Sciences; Life Sciences; Pharmaceutical and Chemical Sciences; Physics; Political and Social Sciences.

We trust the participants enjoyed the cultural and scientific offerings of Trieste and will keep a special memory of the event.

Giuseppe Borruso
ICCSA 2017 was organized by the University of Trieste (Italy), University of Perugia (Italy), Monash University (Australia), Kyushu Sangyo University (Japan), University of Basilicata (Italy), and University of Minho, (Portugal).

Honorary General Chairs

Antonio Laganà
University of Perugia, Italy
Norio Shiratori
Tohoku University, Japan
Kenneth C.J. Tan
Sardina Systems, Estonia

General Chairs

Giuseppe Borruso
University of Trieste, Italy
Osvaldo Gervasi
University of Perugia, Italy
Bernady O. Apduhan
Kyushu Sangyo University, Japan

Program Committee Chairs

Alfredo Cuzzocrea
University of Trieste, Italy
Beniamino Murgante
University of Basilicata, Italy
Ana Maria A.C. Rocha
University of Minho, Portugal
David Taniar
Monash University, Australia

International Advisory Committee

Jemal Abawajy
Deakin University, Australia
Dharma P. Agrawal
University of Cincinnati, USA
Marina L. Gavrilo
University of Calgary, Canada
Claudia Bauzer Medeiros
University of Campinas, Brazil
Manfred M. Fisher
Vienna University of Economics and Business, Austria
Yee Leung
Chinese University of Hong Kong, SAR China

International Liaison Chairs

Ana Carla P. Bitencourt
Universidade Federal do Reconcavo da Bahia, Brazil
Maria Irene Falcão
University of Minho, Portugal
Robert C.H. Hsu
Chung Hua University, Taiwan
Tai-Hoon Kim
Hannam University, Korea
Sanjay Misra
University of Minna, Nigeria
Takashi Naka
Kyushu Sangyo University, Japan
Rafael D.C. Santos National Institute for Space Research, Brazil
Maribel Yasmina Santos University of Minho, Portugal

Workshop and Session Organizing Chairs

Beniamino Murgante University of Basilicata, Italy
Sanjay Misra Covenant University, Nigeria
Jorge Gustavo Rocha University of Minho, Portugal

Award Chair

Wenny Rahayu La Trobe University, Australia

Publicity Committee Chair

Stefano Cozzini Democritos Center, National Research Council, Italy
Elmer Dadios De La Salle University, Philippines
Hong Quang Nguyen International University (VNU-HCM), Vietnam
Daisuke Takahashi Tsukuba University, Japan
Shangwang Wang Beijing University of Posts and Telecommunications, China

Workshop Organizers

Agricultural and Environmental Big Data Analytics (AEDBA 2017)

Sandro Bimonte IRSTEA, France
André Miralles IRSTEA, France

Advances in Data Mining for Applications (AMDMA 2017)

Carlo Cattani University of Tuscia, Italy
Majaz Moonis University of Massachusetts Medical School, USA
Yeliz Karaca IEEE, Computer Society Association

Advances Smart Mobility and Transportation (ASMAT 2017)

Mauro Mazzei CNR, Italian National Research Council, Italy

Advances in Information Systems and Technologies for Emergency Preparedness and Risk Assessment and Mitigation (ASTER 2017)

Maurizio Pollino ENEA, Italy
Marco Vona University of Basilicata, Italy
Beniamino Murgante University of Basilicata, Italy
Advances in Web-Based Learning (AWBL 2017)

Mustafa Murat Inceoglu
Ege University, Turkey

Birol Ciloglugil
Ege University, Turkey

Big Data Warehousing and Analytics (BIGGS 2017)

Maribel Yasmina Santos
University of Minho, Portugal

Monica Wachowicz
University of New Brunswick, Canada

Joao Moura Pires
NOVA de Lisboa University, Portugal

Rafael Santos
National Institute for Space Research, Brazil

Bio-inspired Computing and Applications (BIONCA 2017)

Nadia Nedjah
State University of Rio de Janeiro, Brazil

Luiza de Macedo Mourell
State University of Rio de Janeiro, Brazil

Computational and Applied Mathematics (CAM 2017)

M. Irene Falcao
University of Minho, Portugal

Fernando Miranda
University of Minho, Portugal

Computer-Aided Modeling, Simulation, and Analysis (CAMSA 2017)

Jie Shen
University of Michigan, USA and Jilin University, China

Hao Chenina
Shanghai University of Engineering Science, China

Chaochun Yuan
Jiangsu University, China

Computational and Applied Statistics (CAS 2017)

Ana Cristina Braga
University of Minho, Portugal

Computational Geometry and Security Applications (CGSA 2017)

Marina L. Gavrilova
University of Calgary, Canada

Central Italy 2016 Earthquake: Computational Tools and Data Analysis for Emergency Response, Community Support, and Reconstruction Planning (CIEQ 2017)

Alessandro Rasulo
Università degli Studi di Cassino e del Lazio Meridionale, Italy

Davide Lavorato
Università degli Studi di Roma Tre, Italy
Computational Methods for Business Analytics (CMBA 2017)

Telmo Pinto University of Minho, Portugal
Claudio Alves University of Minho, Portugal

Chemistry and Materials Sciences and Technologies (CMST 2017)

Antonio Laganà University of Perugia, Italy
Noelia Faginas Lago University of Perugia, Italy

Computational Optimization and Applications (COA 2017)

Ana Maria Rocha University of Minho, Portugal
Humberto Rocha University of Coimbra, Portugal

Cities, Technologies, and Planning (CTP 2017)

Giuseppe Borruso University of Trieste, Italy
Beniamino Murgante University of Basilicata, Italy

Data-Driven Modelling for Sustainability Assessment (DAMOST 2017)

Antonino Marvuglia Luxembourg Institute of Science and Technology, LIST, Luxembourg
Mikhail Kanevski University of Lausanne, Switzerland
Beniamino Murgante University of Basilicata, Italy
Janusz Starczewski Częstochowa University of Technology, Poland

Databases and Computerized Information Retrieval Systems (DCIRS 2017)

Sultan Alamri College of Computing and Informatics, SEU, Saudi Arabia
Adil Fahad Alhaha University, Saudi Arabia
Abdullah Alamri Jeddah University, Saudi Arabia

Data Science for Intelligent Decision Support (DS4IDS 2016)

Filipe Portela University of Minho, Portugal
Manuel Filipe Santos University of Minho, Portugal
Deep Cities: Intelligence and Interoperability (DEEP_CITY 2017)

Maurizio Pollino
ENA, Italian National Agency for New Technologies,
Energy and Sustainable Economic Development, Italy

Grazia Fattoruso
ENA, Italian National Agency for New Technologies,
Energy and Sustainable Economic Development, Italy

Emotion Recognition (EMORE 2017)

Valentina Franzoni
University of Rome La Sapienza, Italy

Alfredo Milani
University of Perugia, Italy

Future Computing Systems, Technologies, and Applications (FISTA 2017)

Bernady O. Apduhan
Kyushu Sangyo University, Japan

Rafael Santos
National Institute for Space Research, Brazil

Geographical Analysis, Urban Modeling, Spatial Statistics (Geo-and-Mod 2017)

Giuseppe Borruso
University of Trieste, Italy

Beniamino Murgante
University of Basilicata, Italy

Hartmut Asche
University of Potsdam, Germany

Eufemia Tarantino
Polytechnic of Bari, Italy

Rosa Lasaponara
Italian Research Council, IMAA-CNR, Italy

Antonio Novelli
Polytechnic of Bari, Italy

Interactively Presenting High-Quality Graphics in Cooperation with Various Computing Tools (IPHQG 2017)

Masataka Kaneko
Toho University, Japan

Setsuo Takato
Toho University, Japan

Satoshi Yamashita
Kisarazu National College of Technology, Italy

Web-Based Collective Evolutionary Systems: Models, Measures, Applications (IWCES 2017)

Alfredo Milani
University of Perugia, Italy

Rajdeep Nyogi
Institute of Technology, Roorkee, India

Valentina Franzoni
University of Rome La Sapienza, Italy

M. Filomena Teodoro Lisbon University and Portuguese Naval Academy, Portugal
Anacleto Correia Portuguese Naval Academy, Portugal

Land Use Monitoring for Soil Consumption Reduction (LUMS 2017)

Carmelo M. Torre Polytechnic of Bari, Italy
Beniamino Murgante University of Basilicata, Italy
Alessandro Bonifazi Polytechnic of Bari, Italy
Massimiliano Bencardino University of Salerno, Italy

Mobile Communications (MC 2017)

Hyunseung Choo Sungkyunkwan University, Korea

Mobile-Computing, Sensing, and Actuation - Fog Networking (MSA4FOG 2017)

Saad Qaisar NUST School of Electrical Engineering and Computer Science, Pakistan
Moonseong Kim Korean Intellectual Property Office, South Korea

Physiological and Affective Computing: Methods and Applications (PACMA 2017)

Robertas Damasevicius Kaunas University of Technology, Lithuania
Christian Napoli University of Catania, Italy
Marcin Wozniak Silesian University of Technology, Poland

Quantum Mechanics: Computational Strategies and Applications (QMCSA 2017)

Mirco Ragni Universidad Federal de Bahia, Brazil
Ana Carla Peixoto Universidade Estadual de Feira de Santana, Brazil
Vincenzo Aquilanti University of Perugia, Italy
Advances in Remote Sensing for Cultural Heritage (RS 2017)
Rosa Lasaponara IRMMA, CNR, Italy
Nicola Masini IBAM, CNR, Italy Zhengzhou Base, International Center on Space Technologies for Natural and Cultural Heritage, China

Scientific Computing Infrastructure (SCI 2017)
Elena Stankova Saint Petersburg State University, Russia
Alexander Bodganov Saint Petersburg State University, Russia
Vladimir Korkhov Saint Petersburg State University, Russia

Software Engineering Processes and Applications (SEPA 2017)
Sanjay Misra Covenant University, Nigeria

Sustainability Performance Assessment: Models, Approaches and Applications Toward Interdisciplinarity and Integrated Solutions (SPA 2017)
Francesco Scorza University of Basilicata, Italy
Valentin Grecu Lucia Blaga University on Sibiu, Romania
Jolanta Dvarioniene Kaunas University, Lithuania
Sabrina Lai Cagliari University, Italy

Software Quality (SQ 2017)
Sanjay Misra Covenant University, Nigeria

Advances in Spatio-Temporal Analytics (ST-Analytics 2017)
Rafael Santos Brazilian Space Research Agency, Brazil
Karine Reis Ferreira Brazilian Space Research Agency, Brazil
Maribel Yasmina Santos University of Minho, Portugal
Joao Moura Pires New University of Lisbon, Portugal

Tools and Techniques in Software Development Processes (TTSQP 2017)
Sanjay Misra Covenant University, Nigeria
Challenges, Trends, and Innovations in VGI (VGI 2017)

Claudia Ceppi University of Basilicata, Italy
Beniamino Murgante University of Basilicata, Italy
Lucia Tilio University of Basilicata, Italy
Francesco Mancini University of Modena and Reggio Emilia, Italy
Rodrigo Tapia-McClung Centro de Investigación en Geografía y Geomática “Ing Jorge L. Tamayo”, Mexico
Jorge Gustavo Rocha University of Minho, Portugal

Virtual Reality and Applications (VRA 2017)

Osvaldo Gervasi University of Perugia, Italy

Industrial Computational Applications (WICA 2017)

Eric Medvet University of Trieste, Italy
Gianfranco Fenu University of Trieste, Italy
Riccardo Ferrari Delft University of Technology, The Netherlands

XIV International Workshop on Quantum Reactive Scattering (QRS 2017)

Niyazi Bulut Firat University, Turkey
Noelia Faginas Lago University of Perugia, Italy
Andrea Lombardi University of Perugia, Italy
Federico Palazzetti University of Perugia, Italy

Program Committee

Jemal Abawajy Deakin University, Australia
Kenny Adamson University of Ulster, UK
Filipe Alvelos University of Minho, Portugal
Paula Amaral Universidade Nova de Lisboa, Portugal
Hartmut Asche University of Potsdam, Germany
Md. Abul Kalam Azad University of Minho, Portugal
Michela Bertolotto University College Dublin, Ireland
Sandro Bimonte CEMAGREF, TSCF, France
Rod Blais University of Calgary, Canada
Ivan Blečić University of Sassari, Italy
Giuseppe Borruso University of Trieste, Italy
Yves Caniou Lyon University, France
José A. Cardoso e Cunha Universidade Nova de Lisboa, Portugal
Rui Cardoso University of Beira Interior, Portugal
Leocadio G. Casado University of Almeria, Spain
Carlo Cattani University of Salerno, Italy
Mete Celik Erciyes University, Turkey
Alexander Chemeris National Technical University of Ukraine KPI, Ukraine
Min Young Chung Sungkyunkwan University, Korea
Gilberto Corso Pereira Federal University of Bahia, Brazil
M. Fernanda Costa University of Minho, Portugal
Gaspar Cunha University of Minho, Portugal
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Carla Dal Sasso Freitas Universidade Federal do Rio Grande do Sul, Brazil
Pradesh Debba The Council for Scientific and Industrial Research (CSIR), South Africa
Hendrik Decker Instituto Tecnológico de Informática, Spain
Frank Devai London South Bank University, UK
Rodolphe Devillers Memorial University of Newfoundland, Canada
Prabu Dorairaj NetApp, India/USA
M. Irene Falcao University of Minho, Portugal
Cherry Liu Fang U.S. DOE Ames Laboratory, USA
Edite M.G.P. Fernandes University of Minho, Portugal
Jose-Jesus Fernandez National Centre for Biotechnology, CSIS, Spain
Maria Antonia Forjaz University of Minho, Portugal
Maria Celia Furtado Rocha PRODEB-Pós Cultura/UFBA, Brazil
Akemi Galvez University of Cantabria, Spain
Paulino Jose Garcia Nieto University of Oviedo, Spain
Marina Gavrilova University of Calgary, Canada
Jerome Gensel LSR-IMAG, France
Maria Giaoutzi National Technical University, Athens, Greece
Andrzej M. Goscinski Deakin University, Australia
Alex Hagen-Zanker University of Cambridge, UK
Malgorzata Hanzl Technical University of Lodz, Poland
Shanmugasundaram B.S. Abdur Rahman University, India
Hariharan
Eligius M.T. Hendrix University of Malaga/Wageningen University, Spain/The Netherlands
Tutut Herawan Universitas Teknologi Yogyakarta, Indonesia
Hisamoto Hiyoshi Gunma University, Japan
Fermin Huarte University of Barcelona, Spain
Andres Iglesias University of Cantabria, Spain
Mustafa Inceoglu EGE University, Turkey
Peter Jimack University of Leeds, UK
Qun Jin Waseda University, Japan
Farid Karimipour Vienna University of Technology, Austria
Baris Kazar Oracle Corp., USA
Maulana Adhinugraha Telkom University, Indonesia
Kiki
DongSeong Kim University of Canterbury, New Zealand
Taihoon Kim Hannam University, Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Dieter Kranzlmueller LMU and LRZ Munich, Germany
Antonio Laganà University of Perugia, Italy
Rosa Lasaponara National Research Council, Italy
Maurizio Lazzari National Research Council, Italy
Cheng Siong Lee Monash University, Australia
Sangyoun Lee Yonsei University, Korea
Jongchan Lee Kunsan National University, Korea
Clement Leung Hong Kong Baptist University, Hong Kong, SAR China
Chendong Li University of Connecticut, USA
Gang Li Deakin University, Australia
Ming Li East China Normal University, China
Fang Liu AMES Laboratories, USA
Xin Liu University of Calgary, Canada
Savino Longo University of Bari, Italy
Tinghuai Ma NanJing University of Information Science and Technology, China
Sergio Maffioletti University of Zurich, Switzerland
Ernesto Marcheggiani Katholieke Universiteit Leuven, Belgium
Antonino Marvuglia Research Centre Henri Tudor, Luxembourg
Nicola Masini National Research Council, Italy
Nirvana Meratnia University of Twente, The Netherlands
Alfredo Milani University of Perugia, Italy
Sanjay Misra Federal University of Technology Minna, Nigeria
Giuseppe Modica University of Reggio Calabria, Italy
José Luis Montañà University of Cantabria, Spain
Beniamino Murgante University of Basilicata, Italy
Jiri Nedoma Academy of Sciences of the Czech Republic, Czech Republic
Laszlo Neumann University of Girona, Spain
Kok-Leong Ong Deakin University, Australia
Belen Palop Universidad de Valladolid, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Eric Parde La Trobe University, Australia
Kwangjin Park Wonkwang University, Korea
Ana Isabel Pereira Polytechnic Institute of Braganca, Portugal
Maurizio Pollino Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
Alenka Poplin University of Hamburg, Germany
Vidyasagar Potdar Curtin University of Technology, Australia
David C. Prosperi Florida Atlantic University, USA
Wenny Rahayu La Trobe University, Australia
Jerzy Respondek Silesian University of Technology Poland
Ana Maria A.C. Rocha University of Minho, Portugal
Maria Clara Rocha ESTES Coimbra, Portugal
Humberto Rocha INESC-Coimbra, Portugal
Alexey Rodionov Institute of Computational Mathematics and Mathematical Geophysics, Russia
Cristina S. Rodrigues University of Minho, Portugal
Jon Rokne University of Calgary, Canada
Octavio Roncero CSIC, Spain
Maytham Safar Kuwait University, Kuwait
Chiara Saracino A.O. Ospedale Niguarda Ca’ Granda - Milano, Italy
Haiduke Sarafian The Pennsylvania State University, USA
Jie Shen University of Michigan, USA
Qi Shi Liverpool John Moores University, UK
Dale Shires U.S. Army Research Laboratory, USA
Takuo Suganuma Tohoku University, Japan
Sergio Tasso University of Perugia, Italy
Ana Paula Teixeira University of Tras-os-Montes and Alto Douro, Portugal
Senhorinha Teixeira University of Minho, Portugal
Parimala Thulasiraman University of Manitoba, Canada
Carmelo Torre Polytechnic of Bari, Italy
Javier Martinez Torres Centro Universitario de la Defensa Zaragoza, Spain
Giuseppe A. Trunfio University of Sassari, Italy
Unal Ufuktepe Izmir University of Economics, Turkey
Toshihiro Uchibayashi Kyushu Sangyo University, Japan
Mario Valle Swiss National Supercomputing Centre, Switzerland
Pablo Vanegas University of Cuenca, Ecuador
Piero Giorgio Verdini INFN Pisa and CERN, Italy
Marco Vizzari University of Perugia, Italy
Koichi Wada University of Tsukuba, Japan
Krzysztof Walkowiak Wroclaw University of Technology, Poland
Zequan Wang Intelligent Automation Inc., USA
Robert Weibel University of Zurich, Switzerland
Roland Wismüller Universität Siegen, Germany
Mudasser Wyne SOET National University, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Xin-She Yang National Physical Laboratory, UK
Salim-Zabir France Telecom Japan Co., Japan
Haifeng Zhao University of California, Davis, USA
Kewen Zhao University of Qiongzhou, China
Albert Y. Zomaya University of Sydney, Australia
Additional Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Alwan Al-Juboori Ali</td>
<td>School of Computer Science and Technology, China</td>
</tr>
<tr>
<td>Aceto Lidia</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Acharjee Shukla</td>
<td>Dibrugarh University, India</td>
</tr>
<tr>
<td>Afreixo Vera</td>
<td>University of Aveiro, Portugal</td>
</tr>
<tr>
<td>Agra Agostinho</td>
<td>University of Aveiro, Portugal</td>
</tr>
<tr>
<td>Aguilar Antonio</td>
<td>University of Barcelona, Spain</td>
</tr>
<tr>
<td>Aguilar José Alfonso</td>
<td>Universidad Autónoma de Sinaloa, Mexico</td>
</tr>
<tr>
<td>Aicardi Irene</td>
<td>Politecnico di Torino, Italy</td>
</tr>
<tr>
<td>Alberti Margarita</td>
<td>University of Barcelona, Spain</td>
</tr>
<tr>
<td>Alberto Rui</td>
<td>University of Lisbon, Portugal</td>
</tr>
<tr>
<td>Ali Salman</td>
<td>University of Magna Graecia, Italy</td>
</tr>
<tr>
<td>Alvanides Seraphim</td>
<td>University at Newcastle, UK</td>
</tr>
<tr>
<td>Alvelos Filipe</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Amato Alba</td>
<td>Seconda Università degli Studi di Napoli, Italy</td>
</tr>
<tr>
<td>Amorim Paulo</td>
<td>Instituto de Matemática da UFRJ (IM-UFRJ), Brazil</td>
</tr>
<tr>
<td>Anderson Roger</td>
<td>University of California Santa Cruz, USA</td>
</tr>
<tr>
<td>Andrianov Serge</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Andrienko Gennady</td>
<td>Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme, Germany</td>
</tr>
<tr>
<td>Apduhan Bernady</td>
<td>Kyushu Sangyo University, Japan</td>
</tr>
<tr>
<td>Aquilanti Vincenzo</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Asche Hartmut</td>
<td>Potsdam University, Germany</td>
</tr>
<tr>
<td>Azam Samiul</td>
<td>United International University, Bangladesh</td>
</tr>
<tr>
<td>Azevedo Ana</td>
<td>Athabasca University, USA</td>
</tr>
<tr>
<td>Bae Ihn-Han</td>
<td>Catholic University of Daegu, South Korea</td>
</tr>
<tr>
<td>Balacco Gabriella</td>
<td>Politechnic of Bari, Italy</td>
</tr>
<tr>
<td>Balena Pasquale</td>
<td>Politechnic of Bari, Italy</td>
</tr>
<tr>
<td>Barroca Filho Itamar</td>
<td>Universidade Federal do Rio Grande do Norte, Brazil</td>
</tr>
<tr>
<td>Behera Ranjan Kumar</td>
<td>Indian Institute of Technology Patna, India</td>
</tr>
<tr>
<td>Belpassi Leonardo</td>
<td>National Research Council, Italy</td>
</tr>
<tr>
<td>Bentayeb Fadila</td>
<td>Université Lyon, France</td>
</tr>
<tr>
<td>Bernardino Raquel</td>
<td>Universidade da Beira Interiore, Portugal</td>
</tr>
<tr>
<td>Bertolotto Michela</td>
<td>University College Dublin, UK</td>
</tr>
<tr>
<td>Bhatta Bijaya</td>
<td>Utkal University, India</td>
</tr>
<tr>
<td>Bimonte Sandro</td>
<td>IRSTEA, France</td>
</tr>
<tr>
<td>Blecic Ivan</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Bo Carles</td>
<td>ICIQ, Spain</td>
</tr>
<tr>
<td>Bogdanov Alexander</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Bollini Letizia</td>
<td>University of Milano-Bicocca, Italy</td>
</tr>
<tr>
<td>Bonifazi Alessandro</td>
<td>Politechnic of Bari, Italy</td>
</tr>
<tr>
<td>Bonnet Claude-Laurent</td>
<td>Université de Bordeaux, France</td>
</tr>
<tr>
<td>Borgogno Mondino Enrico Corrado</td>
<td>University of Turin, Italy</td>
</tr>
<tr>
<td>Borruso Giuseppe</td>
<td>University of Trieste, Italy</td>
</tr>
</tbody>
</table>
Bostenaru Maria
Boussaid Omar
Braga Ana Cristina
Braga Nuno
Brasil Luciana
Cabral Pedro
Cacao Isabel
Caiapha Emanuela
Campagna Michele
Caniaoti Renhe Marcelo
Canora Filomena
Caradonna Grazia
Cardoso Rui
Caroti Gabriella
Carravilla Maria Antonia
Cattani Carlo
Cefalo Raffaela
Ceppi Claudia
Cerreta Maria
Chanet Jean-Pierre
Chaturvedi Krishna Kumar
Chiancone Andrea
Choo Hyunseung
Ciabo Serena
Coffetti Cecilia
Correia Aldina
Correia Anacleto
Correia Elisete
Correia Florbela Maria da Cruz Domingues
Cosido Oscar
Costa e Silva Eliana
Costa Graça
Costantini Alessandro
Crispim José
Cuzzocrea Alfredo
Danese Maria
Daneshpajouh Shervin
De Fazio Dario
De Runz Cyril
Deffuant Guillaume
Degtyarev Alexander
Devai Frank
Di Leo Margherita

Ion Mincu University of Architecture and Urbanism, Romania
Université Lyon 2, France
University of Minho, Portugal
University of Minho, Portugal
Instituto Federal Sao Paolo, Brazil
Universidade NOVA de Lisboa, Portugal
University of Aveiro, Portugal
Enea, Italy
University of Cagliari, Italy
Universidade Federal de Juiz de Fora, Brazil
University of Basilicata, Italy
Polytechnic of Bari, Italy
Beira Interior University, Portugal
University of Pisa, Italy
Universidade do Porto, Portugal
University of Salerno, Italy
University of Trieste, Italy
Polytechnic of Bari, Italy
University Federico II of Naples, Italy
UR TSCF Irstea, France
University of Delhi, India
University of Perugia, Italy
Sungkyunkwan University, South Korea
University of l’Aquila, Italy
University of Chieti, Italy
Porto Polytechnic, Portugal
CINAV, Portugal
University of Trás-Os-Montes e Alto Douro, Portugal
Instituto Politécnico de Viana do Castelo, Portugal
University of Cantabria, Spain
University of Minho, Portugal
Instituto Politécnico de Setúbal, Portugal
INFN, Italy
University of Minho, Portugal
University of Trieste, Italy
IBAM, CNR, Italy
University of Western Ontario, USA
IMIP-CNR, Italy
University of Reims Champagne-Ardenne, France
Institut national de recherche en sciences et technologies pour l’environnement et l’agriculture, France
Saint Petersburg State University, Russia
London South Bank University, UK
JRC, European Commission, Belgium
Dias Joana University of Coimbra, Portugal
Dilo Arta University of Twente, The Netherlands
Dvarioniene Jolanta Kaunas University of Technology, Lithuania
El-Zawawy Mohamed A. Cairo University, Egypt
Escalona Maria-Jose University of Seville, Spain
Faginas-Lago, Noelia University of Perugia, Italy
Falcinelli Stefano University of Perugia, Italy
Falcão M. Irene University of Minho, Portugal
Faria Susana University of Minho, Portugal
Fattoruso Grazia ENEA, Italy
Fenu Gianfranco University of Trieste, Italy
Fernandes Edite University of Minho, Portugal
Fernandes Florbela Escola Superior de Tecnologia e Gestão de Bragança, Portugal
Fernandes Rosario USP/ESALQ, Brazil
Ferrari Riccardo Delft University of Technology, The Netherlands
Figueiredo Manuel Carlos University of Minho, Portugal
Florence Le Ber ENGEES, France
Flouvat Frederic University of New Caledonia, France
Fontes Dalila Universidade do Porto, Portugal
Franzoni Valentina University of Perugia, Italy
Freitas Adelaide de Fátima Baptista Valente University of Aveiro, Portugal
Fusco Giovanni Università di Bari, Italy
Gabrani Goldie Tecpro Syst. Ltd., India
Gaido Luciano INFN, Italy
Gallo Crescenzio University of Foggia, Italy
Garaba Shungu University of Connecticut, USA
Garau Chiara University of Cagliari, Italy
Garcia Ernesto University of the Basque Country, Spain
Gargano Ricardo Universidade Brasília, Brazil
Gavrilova Marina University of Calgary, Canada
Gensel Jerome IMAG, France
Gervasi Osvaldo University of Perugia, Italy
Gioia Andrea Polytechnic University of Bari, Italy
Giovinazzi Sonia University of Canterbury, New Zealand
Gizzi Fabrizio National Research Council, Italy
Gomes dos Anjos Eudisley Universidade Federal da Paraíba, Brazil
Gonzaga de Oliveira Sanderson Lincoln Universidade Federal de Lavras, Brazil
Gonçalves Arminda Manuela University of Minho, Braga, Portugal
Gorbachev Yuriy Geolink Technologies, Russia
Grecu Valentin University of Sibiu, Romania
Gupta Brij Cancer Biology Research Center, USA
Hagen-Zanker Alex University of Surrey, UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamaguchi Naoki</td>
<td>Tokyo Kyoiku University, Japan</td>
</tr>
<tr>
<td>Hanazumi Simone</td>
<td>University of Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Hanzl Malgorzata</td>
<td>University of Lodz, Poland</td>
</tr>
<tr>
<td>Hayashi Masaki</td>
<td>University of Calgary, Canada</td>
</tr>
<tr>
<td>Hendrix Eligius M.T.</td>
<td>Operations Research and Logistics Group, The Netherlands</td>
</tr>
<tr>
<td>Henrique Carla</td>
<td>Inst. Politécnico de Viseu, Portugal</td>
</tr>
<tr>
<td>Herawan Tutut</td>
<td>State Polytechnic of Malang, Indonesia</td>
</tr>
<tr>
<td>Hsu Hui-Huang</td>
<td>National Chiao Tung University, Taiwan</td>
</tr>
<tr>
<td>Ienco Dino</td>
<td>La Maison de la télédétection de Montpellier, France</td>
</tr>
<tr>
<td>Iglesias Andres</td>
<td>Universidad de Cantabria, Spain</td>
</tr>
<tr>
<td>Imran Rabeea</td>
<td>NUST Islamabad, Pakistan</td>
</tr>
<tr>
<td>Inoue Kentaro</td>
<td>National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Josselin Didier</td>
<td>Université d’Avignon et des Pays de Vaucluse, France</td>
</tr>
<tr>
<td>Kaneko Masataka</td>
<td>Kisorazu National College of Technology, Japan</td>
</tr>
<tr>
<td>Kang Myoung-Ah</td>
<td>Blaise Pascal University, France</td>
</tr>
<tr>
<td>Karampiperis Pythagoras</td>
<td>National Center of Scientific Research, Athens, Greece</td>
</tr>
<tr>
<td>Kavouras Marinos</td>
<td>University of Athens, Greece</td>
</tr>
<tr>
<td>Kolingerova Ivana</td>
<td>University of West Bohemia, Czech Republic</td>
</tr>
<tr>
<td>Korkhov Vladimir</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Kotzinos Dimitrios</td>
<td>University of Cergy Pontoise, France</td>
</tr>
<tr>
<td>Kulabukhova Natalia</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Kumar Dileep</td>
<td>SR Engineering College, India</td>
</tr>
<tr>
<td>Kumar Lov</td>
<td>National Institute of Technology, Rourkela, India</td>
</tr>
<tr>
<td>Kumar Pawan</td>
<td>Institute for Advanced Study, Princeton, USA</td>
</tr>
<tr>
<td>Laganà Antonio</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Lai Sabrina</td>
<td>Università di Cagliari, Italy</td>
</tr>
<tr>
<td>Lanza Viviana</td>
<td>Lombardy Regional Institute for Research, Italy</td>
</tr>
<tr>
<td>Lasala Piermichele</td>
<td>Università di Foggia, Italy</td>
</tr>
<tr>
<td>Laurent Anne</td>
<td>Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, France</td>
</tr>
<tr>
<td>Lavorato Davide</td>
<td>University of Rome, Italy</td>
</tr>
<tr>
<td>Le Duc Tai</td>
<td>Sungkyunkwan University, South Korea</td>
</tr>
<tr>
<td>Legatiuk Dmitrii</td>
<td>Bauhaus University, Germany</td>
</tr>
<tr>
<td>Li Ming</td>
<td>University of Waterloo, Canada</td>
</tr>
<tr>
<td>Lima Ana</td>
<td>University of São Paulo (UNIFESP), Brazil</td>
</tr>
<tr>
<td>Liu Xin</td>
<td>École polytechnique fédérale de Lausanne, Switzerland</td>
</tr>
<tr>
<td>Lombardi Andrea</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Lopes Cristina</td>
<td>Instituto Superior de Contabilidade e Administracao do Porto, Portugal</td>
</tr>
<tr>
<td>Lopes Maria João</td>
<td>Instituto Universitário de Lisboa, Portugal</td>
</tr>
<tr>
<td>Lourenço Vanda Marisa</td>
<td>Universidade NOVA de Lisboa, Portugal</td>
</tr>
<tr>
<td>Machado Jose</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Maeda Yoichi</td>
<td>Tokai University, Japan</td>
</tr>
<tr>
<td>Majcen Nineta</td>
<td>Euchems, Belgium</td>
</tr>
<tr>
<td>Malonek Helmuth</td>
<td>Universidade de Aveiro, Portugal</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Mancini Francesco</td>
<td>University of Modena and Reggio Emilia, Italy</td>
</tr>
<tr>
<td>Mandanici Emanuele</td>
<td>Università di Bologna, Italy</td>
</tr>
<tr>
<td>Manganelli Benedetto</td>
<td>Università degli studi della Basilicata, Italy</td>
</tr>
<tr>
<td>Manso Callejo Miguel Angel</td>
<td>Universidad Politécnica de Madrid, Spain</td>
</tr>
<tr>
<td>Margalef Tomas</td>
<td>Autonomous University of Barcelona, Spain</td>
</tr>
<tr>
<td>Marques Jorge</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Martins Bruno</td>
<td>Universidade de Lisboa, Portugal</td>
</tr>
<tr>
<td>Marvuglia Antonino</td>
<td>Public Research Centre Henri Tudor, Luxembourg</td>
</tr>
<tr>
<td>Mateos Cristian</td>
<td>Universidad Nacional del Centro, Argentina</td>
</tr>
<tr>
<td>Mauro Giovanni</td>
<td>University of Trieste, Italy</td>
</tr>
<tr>
<td>McGuire Michael</td>
<td>Towson University, USA</td>
</tr>
<tr>
<td>Medvet Eric</td>
<td>University of Trieste, Italy</td>
</tr>
<tr>
<td>Milani Alfredo</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Millham Richard</td>
<td>Durban University of Technology, South Africa</td>
</tr>
<tr>
<td>Minghini Marco</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Minhas Umar</td>
<td>University of Waterloo, Ontario, Canada</td>
</tr>
<tr>
<td>Miralles André</td>
<td>La Maison de la télédétection de Montpellier, France</td>
</tr>
<tr>
<td>Miranda Fernando</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Misra Sanjay</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Modica Giuseppe</td>
<td>Università Mediterranea di Reggio Calabria, Italy</td>
</tr>
<tr>
<td>Molaei Qelichi Mohamad</td>
<td>University of Tehran, Iran</td>
</tr>
<tr>
<td>Monteiro Ana Margarida</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Morano Pierluigi</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Moura Ana</td>
<td>Universidade de Aveiro, Portugal</td>
</tr>
<tr>
<td>Moura Pires João</td>
<td>Universidade NOVA de Lisboa, Portugal</td>
</tr>
<tr>
<td>Mourão Maria</td>
<td>ESTG-IPVC, Portugal</td>
</tr>
<tr>
<td>Murgante Beniamino</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Nagy Csaba</td>
<td>University of Szeged, Hungary</td>
</tr>
<tr>
<td>Nakamura Yasuyuki</td>
<td>Nagoya University, Japan</td>
</tr>
<tr>
<td>Natário Isabel Cristina</td>
<td>University Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Maciel</td>
<td></td>
</tr>
<tr>
<td>Nemmaoui Abderrahim</td>
<td>Universidad de Almeria (UAL), Spain</td>
</tr>
<tr>
<td>Nguyen Tien Dzung</td>
<td>Sungkyunkwan University, South Korea</td>
</tr>
<tr>
<td>Niyogi Rajdeep</td>
<td>Indian Institute of Technology Roorkee, India</td>
</tr>
<tr>
<td>Novelli Antonio</td>
<td>University of Bari, Italy</td>
</tr>
<tr>
<td>Oliveira Irene</td>
<td>University of Trás-Os-Montes e Alto Douro, Portugal</td>
</tr>
<tr>
<td>Oliveira José A.</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Ottomanelli Michele</td>
<td>University of Bari, Italy</td>
</tr>
<tr>
<td>Ouchi Shunji</td>
<td>Shimonoseki City University, Japan</td>
</tr>
<tr>
<td>Ozturk Savas</td>
<td>Scientific and Technological Research Council of Turkey, Turkey</td>
</tr>
<tr>
<td>P. Costa M. Fernanda</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Painho Marco</td>
<td>NOVA Information Management School, Portugal</td>
</tr>
<tr>
<td>Panetta J.B.</td>
<td>Tecnologia Geofisica Petroleo Brasileiro SA, PETROBRAS, Brazil</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pantazis Dimos</td>
<td>Otenet, Greece</td>
</tr>
<tr>
<td>Papa Enrica</td>
<td>University of Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Pardede Eric</td>
<td>La Trobe University, Australia</td>
</tr>
<tr>
<td>Parente Claudio</td>
<td>Università degli Studi di Napoli Parthenope, Italy</td>
</tr>
<tr>
<td>Pathan Al-Sakib Khan</td>
<td>Islamic University of Technology, Bangladesh</td>
</tr>
<tr>
<td>Paul Prantosh K.</td>
<td>EILM University, Jorethang, Sikkim, India</td>
</tr>
<tr>
<td>Pengó Edit</td>
<td>University of Szeged, Hungary</td>
</tr>
<tr>
<td>Pereira Ana</td>
<td>IPB, Portugal</td>
</tr>
<tr>
<td>Pereira José Luis</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Peschechera Giuseppe</td>
<td>Università di Bologna, Italy</td>
</tr>
<tr>
<td>Pham Quoc Trung</td>
<td>HCMC University of Technology, Vietnam</td>
</tr>
<tr>
<td>Piemonte Andreaa</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Pimentel Carina</td>
<td>Universidade de Aveiro, Portugal</td>
</tr>
<tr>
<td>Pinet Francois</td>
<td>IRSTEA, France</td>
</tr>
<tr>
<td>Pinto Livio</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Pinto Telmo</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Pinet Francois</td>
<td>IRSTEA, France</td>
</tr>
<tr>
<td>Poli Giuliano</td>
<td>Université Pierre et Marie Curie, France</td>
</tr>
<tr>
<td>Pollino Maurizio</td>
<td>ENEA, Italy</td>
</tr>
<tr>
<td>Portela Carlos Filipe</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Prata Paula</td>
<td>Universidade Federal de Sergipe, Brazil</td>
</tr>
<tr>
<td>Previl Carlo</td>
<td>University of Quebec in Abitibi-Témiscamingue (UQAT), Canada</td>
</tr>
<tr>
<td>Prezioso Giuseppina</td>
<td>Università degli Studi di Napoli Parthenope, Italy</td>
</tr>
<tr>
<td>Pusatli Tolga</td>
<td>Cankaya University, Turkey</td>
</tr>
<tr>
<td>Quan Tho</td>
<td>Ho Chi Minh, University of Technology, Vietnam</td>
</tr>
<tr>
<td>Ragni Mirco</td>
<td>Universidade Estadual de Feira de Santana, Brazil</td>
</tr>
<tr>
<td>Rahman Nazreena</td>
<td>Biotechnology Research Centre, Malaysia</td>
</tr>
<tr>
<td>Rahman Wasiur</td>
<td>Technical University Darmstadt, Germany</td>
</tr>
<tr>
<td>Rashid Sidra</td>
<td>National University of Sciences and Technology (NUST) Islamabad, Pakistan</td>
</tr>
<tr>
<td>Rasulo Alessandro</td>
<td>Università degli studi di Cassino e del Lazio Meridionale, Italy</td>
</tr>
<tr>
<td>Raza Syed Muhammad</td>
<td>Sungkyunkwan University, South Korea</td>
</tr>
<tr>
<td>Reis Ferreira Gomes</td>
<td>Instituto Nacional de Pesquisas Espaciais, Brazil</td>
</tr>
<tr>
<td>Karine</td>
<td></td>
</tr>
<tr>
<td>Requejo Cristina</td>
<td>Universidade de Aveiro, Portugal</td>
</tr>
<tr>
<td>Rocha Ana Maria</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Rocha Humberto</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Rocha Jorge</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Rodriguez Daniel</td>
<td>University of Berkeley, USA</td>
</tr>
<tr>
<td>Saeki Koichi</td>
<td>Graduate University for Advanced Studies, Japan</td>
</tr>
<tr>
<td>Samela Caterina</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Sannicandro Valentina</td>
<td>Polytechnic of Bari, Italy</td>
</tr>
<tr>
<td>Santiago Júnior Valdivino</td>
<td>Instituto Nacional de Pesquisas Espaciais, Brazil</td>
</tr>
<tr>
<td>Sarafian Haiduke</td>
<td>Pennsylvania State University, USA</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Santos Daniel</td>
<td>Universidade Federal de Minas Gerais, Portugal</td>
</tr>
<tr>
<td>Santos Dorabella</td>
<td>Instituto de Telecomunicações, Portugal</td>
</tr>
<tr>
<td>Santos Eulália</td>
<td>SAPO, Portugal</td>
</tr>
<tr>
<td>Santos Maribel Yasmina</td>
<td>Universidade de Minho, Portugal</td>
</tr>
<tr>
<td>Santos Rafael</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>Santucci Valentinoi</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Sautot Lucil</td>
<td>MR TETIS, AgroParisTech, France</td>
</tr>
<tr>
<td>Scaioni Marco</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Schernthanner Harald</td>
<td>University of Potsdam, Germany</td>
</tr>
<tr>
<td>Schneider Michel</td>
<td>ISIMA, France</td>
</tr>
<tr>
<td>Schoier Gabriella</td>
<td>University of Trieste, Italy</td>
</tr>
<tr>
<td>Scorza Francesco</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Sebillo Monica</td>
<td>University of Salerno, Italy</td>
</tr>
<tr>
<td>Severino Ricardo Jose</td>
<td>Universidade de Minho, Portugal</td>
</tr>
<tr>
<td>Shakhov Vladimir</td>
<td>Russian Academy of Sciences (Siberian Branch), Russia</td>
</tr>
<tr>
<td>Sheeren David</td>
<td>Toulouse Institute of Technology, France</td>
</tr>
<tr>
<td>Shen Jie</td>
<td>University of Michigan, USA</td>
</tr>
<tr>
<td>Silva Elsa</td>
<td>INESC Tec, Porto, Portugal</td>
</tr>
<tr>
<td>Sipos Gergely</td>
<td>MTA SZTAKI Computer and Automation Research Institute, Hungary</td>
</tr>
<tr>
<td>Skarga-Bandurova Inna</td>
<td>Technological Institute of East Ukrainian National University, Ukraine</td>
</tr>
<tr>
<td>Skoković Dražen</td>
<td>University of Valencia, Spain</td>
</tr>
<tr>
<td>Skouteris Dimitrios</td>
<td>SNS, Italy</td>
</tr>
<tr>
<td>Soares Inês Soares Maria</td>
<td>Universidade de Minho, Portugal</td>
</tr>
<tr>
<td>Joana</td>
<td></td>
</tr>
<tr>
<td>Soares Michel</td>
<td>Federal University of Sergipe, Brazil</td>
</tr>
<tr>
<td>Sokolovski Dmitri</td>
<td>Ikerbasque, Basque Foundation for Science, Spain</td>
</tr>
<tr>
<td>Sousa Lisete</td>
<td>Research, FCUL, CEAUL, Lisboa, Portugal</td>
</tr>
<tr>
<td>Stener Mauro</td>
<td>Università di Trieste, Italy</td>
</tr>
<tr>
<td>Sumida Yasuaki</td>
<td>Center for Digestive and Liver Diseases, Nara City Hospital, Japan</td>
</tr>
<tr>
<td>Suri Bharti</td>
<td>Guru Gobind Singh Indraprastha University, India</td>
</tr>
<tr>
<td>Sorensen Claus Aage Grøn</td>
<td>University of Aarhus, Denmark</td>
</tr>
<tr>
<td>Tajani Francesco</td>
<td>University of Rome, Italy</td>
</tr>
<tr>
<td>Takato Setsuo</td>
<td>Kisarazu National College of Technology, Japan</td>
</tr>
<tr>
<td>Tanaka Kazuaki</td>
<td>Hasanuddin University, Indonesia</td>
</tr>
<tr>
<td>Taniar David</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>Tapia-McClung Rodrigo</td>
<td>The Center for Research in Geography and Geomatics, Mexico</td>
</tr>
<tr>
<td>Tarantino Eufemia</td>
<td>Polytechnic of Bari, Italy</td>
</tr>
<tr>
<td>Teixeira Ana Paula</td>
<td>Federal University of Ceará, Fortaleza, Brazil</td>
</tr>
<tr>
<td>Teixeira Senhorinha</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Teodoro M. Filomena</td>
<td>Instituto Politécnico de Setúbal, Portugal</td>
</tr>
<tr>
<td>Thill Jean-Claude</td>
<td>University at Buffalo, USA</td>
</tr>
<tr>
<td>Thorat Pankaj</td>
<td>Sungkyunkwan University, South Korea</td>
</tr>
</tbody>
</table>
Tilio Lucia
University of Basilicata, Italy

Tomaz Graça
Instituto Politécnico da Guarda, Portugal

Torre Carmelo Maria
Polytechnic of Bari, Italy

Totaro Vincenzo
Polytechnic University of Bari, Italy

Tran Manh Hung
University of Danang, Vietnam

Tripathi Ashish
MNNIT Allahabad, India

Tripp Barba Carolina
Universidad Autónoma de Sinaloa, Mexico

Tut Zohra Fatema
University of Calgary, Canada

Upadhyay Ashish
Indian Institute of Public Health-Gandhinagar, India

Vallverdu Jordi
Autonomous University of Barcelona, Spain

Valuev Ilya
Russian Academy of Sciences, Russia

Varela Leonilde
University of Minho, Portugal

Varela Tania
Universidade de Lisboa, Portugal

Vasconcelos Paulo
Queensland University, Brisbane, Australia

Vasyunin Dmitry
University of Amsterdam, The Netherlands

Vella Flavio
University of Rome, Italy

Vijaykumar Nandamudi
INPE, Brazil

Vidacs Laszlo
University of Szeged, Hungary

Viqueira José R.R.
Agricultural University of Athens, Greece

Vizzari Marco
University of Perugia, Italy

Vohra Varun
Japan Advanced Institute of Science and Technology (JAIST), Japan

Voit Nikolay
Ulyanovsk State Technical University Ulyanovsk, Russia

Walkowiak Krzysztof
Wroclaw University of Technology, Poland

Wallace Richard J.
University College Cork, Ireland

Waluyo Agustinus Borgy
Monash University, Melbourne, Australia

Wanderley Fernando
FCT/UNL, Portugal

Wei Hoo Chong
Motorola, USA

Yamashita Satoshi
National Research Institute for Child Health and Development, Tokyo, Japan

Yamauchi Toshihiro
Okayama University, Japan

Yao Fenghui
Tennessee State University, USA

Yeoum Sanggil
Sungkyunkwan University, South Korea

Zaza Claudio
University of Foggia, Italy

Zeile Peter
Technische Universität Kaiserslautern, Germany

Zenha-Rela Mario
University of Coimbra, Portugal

Zoppi Corrado
Università di Cagliari, Italy

Zullo Francesco
University of l’Aquila, Italy

Zunino Alejandro
Universidad Nacional del Centro, Argentina

Žemlička Michal
Univerzita Karlova, Czech Republic

Živković Ljiljana
University of Belgrade, Serbia
Sponsoring Organizations

ICCSA 2017 would not have been possible without the tremendous support of many organizations and institutions, for which all organizers and participants of ICCSA 2017 express their sincere gratitude:

University of Trieste, Trieste, Italy
(http://www.units.it/)

University of Perugia, Italy
(http://www.unipg.it)

University of Basilicata, Italy
(http://www.unibas.it)

Monash University, Australia
(http://monash.edu)
Kyushu Sangyo University, Japan
(www.kyusan-u.ac.jp)

Universidade do Minho
Escola de Engenharia

Universidade do Minho, Portugal
(http://www.uminho.pt)
Contents – Part III

Workshop on Chemistry and Materials Sciences and Technologies (CMST 2017)

Acetone-Water Mixtures: Molecular Dynamics Using a Semiempirical Intermolecular Potential ... 3

Noelia Faginas-Lago, Margarita Albertí, Andrea Lombardi, and Federico Palazzetti

Synchronized Content and Metadata Management in a Federation of Distributed Repositories of Chemical Learning Objects 14

Sergio Tasso, Simonetta Pallottelli, Osvaldo Gervasi, Razvan Tanase, and Marina Rui

Open Molecular Science for the Open Science Cloud 29

Antonio Laganà, Gabor Terstyanszky, and Jens Krüger

Determination of Volatile Aroma Composition Profiles of Coco de Mèr (Lodoicea Maldivica) Fruit: Analytical Study by HS-SPME and GC/MS Techniques .. 44

Bartolomeo Sebastiani, Donatella Malfatti, Martino Giorgini, and Stefano Falcinelli

Automated Simulation of Gas-Phase Reactions on Distributed and Cloud Computing Infrastructures 60

Sergio Rampino, Loriano Storchi, and Antonio Laganà

Workshop on Computational Optimization and Applications (COA 2017)

A Global Score-Driven Beam Angle Optimization in IMRT 77

Humberto Rocha, Joana M. Dias, Tiago Ventura, Brígida C. Ferreira, and Maria do Carmo Lopes

Automated Radiotherapy Treatment Planning Using Fuzzy Inference Systems ... 91

Joana Dias, Humberto Rocha, Tiago Ventura, Brígida Ferreira, and Maria do Carmo Lopes

Continuous Relaxation of MINLP Problems by Penalty Functions:
A Practical Comparison .. 107

M. Fernanda P. Costa, Ana Maria A.C. Rocha, and Edite M.G.P. Fernandes
Combining Filter Method and Dynamically Dimensioned Search for Constrained Global Optimization

M. Joseane F.G. Macêdo, M. Fernanda P. Costa,
Ana Maria A.C. Rocha, and Elizabeth W. Karas

Optimal Schedule of Home Care Visits for a Health Care Center

Filipe Alves, Ana I. Pereira, Florbela P. Fernandes, Adília Fernandes,
Paulo Leitão, and Anabela Martins

Neighborhood Analysis on the University Timetabling Problem

Edmar Hell Kampke, Erika Almeida Segatto,
Maria Claudia Silva Boeres, Maria Cristina Rangel,
and Geraldo Regis Mauri

On Grid Aware Refinement of the Unit Hypercube and Simplex:
Focus on the Complete Tree Size

L.G. Casado, E.M.T. Hendrix, J.M.G. Salmerón, B. G.-Tóth,
and I. García

Workshop on Cities, Technologies and Planning (CTP 2017)

Identifying and Using Key Indicators to Determine Neighborhood Types in Different Regions

Harutyun Shahumyan, Chao Liu, Brendan Williams, Gerrit Knaap,
and Daniel Engelberg

Automated Valuation Methods in Atypical Real Estate Markets
Using the Mono-parametric Approach

Marina Ciuna, Manuela De Ruggiero, Benedetto Manganelli,
Francesca Salvo, and Marco Simonotti

Urban Planning and Technological Innovation

Teresa Cilona

Jewish Communities in Pre-war Central Poland as an Example of a Self-organising Society

Małgorzata Hanzlí

The Time Machine. Cultural Heritage and the Geo-Referenced Storytelling of Urban Historical Metamorphose

Letizia Bollini and Daniele Begotti

Risk Prevention and Management. A Multi-actor and Knowledge-Based Approach in Low Density Territories

Alessandro Plaisant, Miriam Mastinu, and Daniela Sini
Optimal Schedule of Home Care Visits for a Health Care Center

Filipe Alves¹, Ana I. Pereira¹,², Florbela P. Fernandes¹, Adília Fernandes¹, Paulo Leitão¹,³, and Anabela Martins⁴

¹ Polytechnic Institute of Bragança, 5301-857 Bragança, Portugal
{filipealves,apereira,fflor,adilia,pleitao}@ipb.pt
² Algoritmi R&D Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
³ LIACC, University of Porto, R. Campo Alegre 1021, 4169-007 Porto, Portugal
⁴ ULSNE, Unidade Local de Saúde do Nordeste, Av. Abade de Baçal, 5301-852 Bragança, Portugal
apaula.martins@ulsne.min-saude.pt

Abstract. The provision of home health care services is becoming an important research area, mainly because in Portugal the population is ageing. Home care visits are organized taking into account the medical treatments and general support that elder/sick people need at home. This health service can be provided by nurse teams from Health Care Centers. Usually, the visits are manually planned and without computer support. The main goal of this work is to carry out the automatic schedule of home care visits, of one Portuguese Health Care Center, in order to minimize the time spent in all home care visits and, consequently, reduce the costs involved. The developed algorithms were coded in MatLab Software and the problem was efficiently solved, obtaining several schedule solutions of home care visits for the presented data. Solutions found by genetic and particle swarm algorithms lead to significant time reductions for both nurse teams and patients.

Keywords: Genetic Algorithm · Particle Swarm Optimization · Health care services · Optimization · Scheduling

1 Introduction

Advances in health care, declining fertility rates and longer life expectancy have led to an increasing number of elderly people in European society, namely, in Portuguese society. Consequently, the number of people who needs home care services is growing over the years. This scenario — to provide home care services — is not only advantageous to elder/sick people but also to the National Health System since it is economically advantageous to keep people at home instead of providing them with a hospital bed [11,15].
The home-based care provided by public or private entities has been the subject of recent research mainly in the operations research area with particular attention on route’s optimization and on the staff teams composition that provide this kind of services [2,3,11,14].

The Portuguese public health system consists in two types of units: Hospitals and Health Care Centers. The Health Care Centers are closer to the population since they follow up their patients continuously and the home care services are performed by nurse teams of these Units. In this context, Health Care Centers have to perform the schedule of the nurse teams inside and outside of the Health Care Centers.

The schedule of the home care visits provided by the Health Care Centers teams depends on the patients and nurses profiles. This represents a complex problem being its main goal to minimize the time needed, by the nurses team, to perform all the home care visits and return to the Health Care Center. The schedule of the home care visits provided by the Health Care Centers can be seen as a vehicle routing problem with specific conditions [10].

The paper is organized as follows: first, it is given a description of the real problem and its mathematical formulation; then it is presented a summary of the genetic algorithm method (GA) and the particle swarm optimization method (PSO) since they were the selected methods to solve the problem. After, numerical results are presented and a comparison is made between the different algorithms used. Finally, some conclusions and future work ideas are given.

2 Problem Description

For a given day, a Health Care Center need to provide the schedule of all nurses team to perform the tasks inside and outside of the Health Care Center. In this paper, it is studied the problem to schedule the tasks outside the Health Care Center, particularly, to find the home care visits schedule for a given day, in order to minimize the travel time to perform all visits. Then, the main objective of this study is to perform automatic planning of home care visits by a nurses team of a Health Care Center of Bragança (HUB), Bragança, Portugal, aiming to minimize all the time spent by the nurses to perform all home care visits.

This optimization problem, related with the HUB, is formulated and solved as follows.

2.1 Assumptions

In the developed model it was assumed, without loss of generality, that:

A.1 Patients who live in the area of HUB can have different profiles.
A.2 A patient profile is assumed to be known a priori and does not change during the home care visit.
A.3 The number and average duration of the treatments that characterize a patient profile are known and are the same among the patients who have the same profile.
A.4 The number of patients who need home care services and assigned to a working day is known in advance and does not change during that day.
A.5 Human resources (nurses) that perform home care visits have different profiles, this means that not all the nurses perform all the treatments.
A.6 All the patients assigned to a working day are covered which means that all the patients admitted to the home care visits have to be assigned to a set of nurses.
A.7 The number of nurses assigned to a working day is known in advance.
A.8 The time of travel between all the localities is also known in advance.
A.9 All the travels begin and end up in the HUB.

2.2 Mathematical Formulation

Taking into account all the above assumptions for a working day, consider the following general and fixed variables:

- \(N \) is the total number of nurses assigned for home care visits.
- \(P \) is the total number of patients that need some treatments at their homes.
- \(L \) is the total number of different patients’ locations.

Another mathematical entities are needed to obtain the final formulation, such as:

- The list of all different treatments and the time needed to perform each treatment.
- The list of the treatments that each nurse can perform.
- The time matrix that presents the time needed to travel between all the different locations.
- The list representing the patient treatment needs.
- The locations of all patients.

Consider the variable \((p; n) = (p_1, \ldots, p_P; n_1, \ldots, n_P)\), where the patient \(p_i\) will be visited by the nurse \(n_i\), for \(i = 1, \ldots, P\), and \(p \in \{1, \ldots, P\}^P\) and \(n \in \{1, \ldots, N\}^P\).

Then, for a given \((p; n)\) it is possible to define the nurse schedule and also the total time needed by each nurse to finish her work. So, consider the objective function \(tt(p; n), n = 1, \ldots, N\) defined as

\[
 f(p; n) = \max_{n=1,\ldots,N} tt(p; n) \tag{1}
\]

which represents the time spent by the nurses to perform all treatments, including the returning journey to the HUB.

Then the constrained integer optimization problem will be defined as

\[
 \begin{align*}
 \text{min } & f(p; n) \\
 \text{s.t. } & 1 \leq p_i \leq P, \ i \in \{1, \ldots, P\}, \ p_i \ \text{integer} \\
 & 1 \leq n_j \leq N, \ j \in \{1, \ldots, P\}, \ n_j \ \text{integer} \tag{2}
\end{align*}
\]

where all the patients need to be treated \(\bigcup_{i=1}^P p_i = \{1, \ldots, P\}\) and the nurse \(n_i\) needs to perform all the treatments of the patient \(p_i\), for \(i = 1, \ldots, P\).
2.3 Real Data

It is intended to apply the developed mathematical model to a real problem of the HUB. The data provided by the HUB concern the day April 18, 2016, [1]. The home care services provided by the assigned nurses to this job can be classified into five different treatments (or home care visits) presented in Table 1.

The HUB has twelve nurses designated to perform home care visits during the day in study. Table 2 shows the allocation of the five treatments by each nurse as well as the average time treatment required.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.1</td>
<td>Curative</td>
<td>Treatments, for example, pressure ulcer, venous ulcer, surgical wounds, traumatic wounds, ligaments, remove suture material, burns, evaluation and dressing of wound dressings</td>
</tr>
<tr>
<td>T.2</td>
<td>Surveillance and Rehabilitation</td>
<td>Evaluation, implementation and patient monitoring</td>
</tr>
<tr>
<td>T.3</td>
<td>Curative and Surveillance</td>
<td>Wound treatment, watch over bandage, frequency and tension monitoring, teach and instruct the patient of the complications and pathologies</td>
</tr>
<tr>
<td>T.4</td>
<td>Surveillance</td>
<td>Assess risk of falls, self-care, patient behaviors and still the providers knowledge. Monitor, height, tension and heart rate. Patients dietary and medical regimen</td>
</tr>
<tr>
<td>T.5</td>
<td>General</td>
<td>Evaluate, support and teach about mourning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nurse 1</th>
<th>T.1 (30 min)</th>
<th>T.2 (60 min)</th>
<th>T.3 (75 min)</th>
<th>T.4 (60 min)</th>
<th>T.5 (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurse 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nurse 3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 8</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 9</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 11</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse 12</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On April 18, there were thirty one patients who needed home care visits by HUB.

Each patient, represented in the first column of Table 3 by $P(\cdot)$, required specific medical assistance — one or more different treatments, from the 5 treatments that the nurses can perform.

Table 3. Summary of which kind of treatments each patient needs.

<table>
<thead>
<tr>
<th></th>
<th>T.1</th>
<th>T.2</th>
<th>T.3</th>
<th>T.4</th>
<th>T.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(1)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(2)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(3)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(4)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(5)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(6)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(7)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(8)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(9)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(10)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(11)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(12)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(13)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(14)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(15)$</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(16)$</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(17)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(18)$</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(19)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(20)$</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(21)$</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>$P(22)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(23)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(24)$</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(25)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(26)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(27)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(28)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(29)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(30)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$P(31)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
The thirty-one patients are from twelve different locations of the Bragança region, that belong to the action area of the HUB. In Table 4, the locations are represented by the corresponding abbreviation. From hereafter it will be used only these abbreviations. In third column it is shown the related number of patients who need health care. The major part of the patients (18) are from Bragança city while 13 patients are from rural localities around Bragança.

The time required to travel between two locations is shown in Table 5. It was assigned 15 min to travel between two different places, in the same location.

Table 4. Short name of the locations and total number of patients in each locality.

<table>
<thead>
<tr>
<th>Localities</th>
<th>Abbreviations</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragança</td>
<td>Bg</td>
<td>18</td>
</tr>
<tr>
<td>Parada</td>
<td>Pa</td>
<td>2</td>
</tr>
<tr>
<td>Rebordainhos</td>
<td>Re</td>
<td>1</td>
</tr>
<tr>
<td>Carrazedo</td>
<td>Car</td>
<td>1</td>
</tr>
<tr>
<td>Espinhosela</td>
<td>Esp</td>
<td>1</td>
</tr>
<tr>
<td>Rebordãos</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>Salsas</td>
<td>Sal</td>
<td>1</td>
</tr>
<tr>
<td>Serapicos</td>
<td>Se</td>
<td>1</td>
</tr>
<tr>
<td>Outeiro</td>
<td>Ou</td>
<td>1</td>
</tr>
<tr>
<td>Meixedo</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>Bragada</td>
<td>Bda</td>
<td>1</td>
</tr>
<tr>
<td>Milhão</td>
<td>Mil</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5. Data about travel times between different locations (in minutes).

<table>
<thead>
<tr>
<th></th>
<th>Bg</th>
<th>Pa</th>
<th>Re</th>
<th>Car</th>
<th>Esp</th>
<th>R</th>
<th>Sal</th>
<th>Se</th>
<th>Ou</th>
<th>M</th>
<th>Bda</th>
<th>Mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bg</td>
<td>15</td>
<td>28</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>14</td>
<td>23</td>
<td>31</td>
<td>23</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Pa</td>
<td>28</td>
<td>15</td>
<td>27</td>
<td>39</td>
<td>37</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>27</td>
<td>40</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>Re</td>
<td>25</td>
<td>27</td>
<td>15</td>
<td>33</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>37</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>Car</td>
<td>26</td>
<td>39</td>
<td>33</td>
<td>15</td>
<td>24</td>
<td>23</td>
<td>34</td>
<td>42</td>
<td>38</td>
<td>39</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td>Esp</td>
<td>20</td>
<td>37</td>
<td>34</td>
<td>24</td>
<td>15</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>33</td>
<td>18</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>R</td>
<td>14</td>
<td>25</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>15</td>
<td>20</td>
<td>28</td>
<td>26</td>
<td>27</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Sal</td>
<td>23</td>
<td>25</td>
<td>12</td>
<td>34</td>
<td>32</td>
<td>20</td>
<td>15</td>
<td>8</td>
<td>30</td>
<td>34</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>Se</td>
<td>31</td>
<td>23</td>
<td>20</td>
<td>42</td>
<td>40</td>
<td>28</td>
<td>8</td>
<td>15</td>
<td>38</td>
<td>42</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>Ou</td>
<td>23</td>
<td>27</td>
<td>32</td>
<td>38</td>
<td>33</td>
<td>26</td>
<td>30</td>
<td>38</td>
<td>15</td>
<td>29</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>40</td>
<td>37</td>
<td>39</td>
<td>18</td>
<td>27</td>
<td>34</td>
<td>42</td>
<td>29</td>
<td>15</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Bda</td>
<td>22</td>
<td>26</td>
<td>14</td>
<td>33</td>
<td>31</td>
<td>19</td>
<td>9</td>
<td>17</td>
<td>30</td>
<td>34</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Mil</td>
<td>24</td>
<td>36</td>
<td>33</td>
<td>39</td>
<td>34</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>14</td>
<td>31</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>
Based on all the presented data, the objective is to obtain the nurses schedule, in order to minimize the total time needed by each nurse to provide all the treatments to all the patients and return to the Health Center.

To solve the minimization problem presented in (2), two different optimization methods were used: Genetic Algorithm and Particle Swarm Optimization method.

3 Optimization Methods

Two global optimization methods were used to solve the nonlinear optimization problem defined in (2): Genetic Algorithm and Particle Swarm Optimization method. Both methods are population-based methods and a brief summary of them follows.

3.1 Genetic Algorithm - GA

The Genetic Algorithm (GA) was proposed by Holland [6] and it is based on the theory of the species evolution.

GA is a stochastic method, whose mechanism is based on simplifications of evolutionary processes observed in nature, namely selection, mutation and crossover [5,7,9,13]. As opposed to many other optimization methods, genetic algorithm works with a population of solutions instead of one single solution. In GA, the solutions are combined to generate new ones until a satisfactory solution is obtained, i.e. until the stop criteria is met.

The genetic algorithm applied in this work is summarized by the following algorithm.

Algorithm 1. Genetic Algorithm

1: Generates a randomly population of individuals, P^0, with dimension N_{pop}. Set $k = 0$.
2: while stopping criterion is not met do
3: Set $k = k + 1$.
4: $P' = \text{Apply crossover procedure in population } P^k$.
5: $P'' = \text{Apply mutation procedure in population } P^k$.
6: $P^{k+1} = NP$ best individuals of $\{P^k \cup P' \cup P''\}$.

The initial population, P^0 consists of N_{pop} individuals, where each one represents a feasible schedule (all constraints are satisfied).

The iterative procedure terminates after a maximum number of iterations (number of generations) or after a maximum number of function evaluations.
3.2 Particle Swarm Optimization - PSO

The Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart [8] and it is based on natural social intelligent behaviors.

PSO is a computational method that optimizes a given problem by iteratively measuring the quality of the various solutions. This method consists in optimizing an objective function through the exchange of information between individuals (particles) of a population (swarm). The PSO idea is to perform a set of operations and move each particle to promising regions in the search space. The Particle Swarm Optimization method also works with a population of solutions and stops when the stop criteria is met [12,16].

At each iteration the velocity of each individual is adjusted. The velocity calculation is based on the best position found by the neighborhood of the individual, the best position found by the particle itself - x_{best} and the best position found by the whole population, taking into account all individual - g_{best} or the best position overall [4].

The particle swarm optimization method applied in this work is summarized by the following algorithm.

Algorithm 2. Particle Swarm Optimization Algorithm

1: Generates a randomly population of individuals, P^0, with dimension N_{pop}.
2: Set the values of w, c_1, r_1. Define c_2, r_2 random numbers in $[0,1]$. Set $v_i = 1$, for $i = 1, \ldots, N_{pop}$, and $k = 0$.
3: while stopping criterion is not met do
4: \hspace{1em} Set $k = k + 1$.
5: \hspace{1em} Update the value of x_{best_i} for the individual with index i, for $i = 1, \ldots, N_{pop}$.
6: \hspace{1em} Update the value of g_{best} for all population P^j, for $j = 1, \ldots, k$.
7: \hspace{1em} Update the individual velocity according to:
 $$v_i^{k+1} = wv_i^k + c_1r_1(x_{best_i} - x_i^k) + [c_2r_2](g_{best} - x_i^k).$$
8: \hspace{1em} Update the individual position according to: $x_i^{k+1} = x_i^k + v_i^{k+1}$.
9: \hspace{1em} If necessary, adapt x_i^{k+1} to a feasible schedule.

During the iterative process if x_i^{k+1} is not a feasible solution, the coordinate that is not feasible will be projected to the feasible region.

The iterative procedure terminates after a maximum number of iterations or after a maximum number of function evaluations.

4 Results and Discussion

The main objective is to produce the nurses’ schedules for the home care visits of the Health Care Center of Bragança for April 18, 2016.

The daily route carried out on April 18 by the Health Care Center of Bragança was made manually, that is, without any mathematical model or subject to computational mechanisms.
The nurses’ schedules were collected [1]. Figure 1 presents the schedule made available by the Health Care Center on April 18 for the twelve nurses that performed the home care visits in that day.

![Fig. 1. Schedule carried out by the Health Care Center (manually)](image)

The time needed to each nurse to perform the health treatment is represented by no color. The light gray color show the time of travel between different locations. The assigned 15 min ride between to different houses in the same city is represented by the dark gray color.

Regarding the identification of patients and treatments, P(1) - T.1 represents Patient 1 who needs Treatment 1. For example, the schedule of the Nurse 8 will be: moves from the HUB to the village of Meixedo (Bg - M) to execute the home care visit of Patient 22, that requires the Treatment 1 (P(22) - T.1). After this, the nurse returns to the point of origin, the Health Care Center (M - Bg). For this nurse, the time spent in this home care visit was 70 min.

Analyzing the scheduling carried out by the Health Care Center, it is possible to conclude that all nurses have different work schedules. The number of patients that each nurse visits change from 1 (Nurse 8) to 7 (Nurse 3) and it is Nurse 3 who has the highest time to provide the home care visits.

On this working day, the total time needed on home visits ended after 369 min.

In an attempt to plan the nurses’ schedule automatically two computational algorithms were used — GA and PSO. The numerical results were obtained using an Intel(R) Core(TM) i7 CPU 2.2GHz with 6.0 GB of RAM and using the MatLab software. The fix variable for both methods were $N_{pop} = 30$, $w = 1$ and $c_1 = r_1 = 2$.

Since the methods used are stochastic methods, each implementation was tested with 100 executions in order to evaluate the results obtained and compare them with the ones obtained from the Health Care Center. Both methods used the same stop criteria, limit the number of function evaluation to 5000 or after 1000 iterations.
Both methods had 100% of successful rate since they found a feasible solution in all runs.

Table 6 presents the summary of both methods, such as: the best solution obtained in all runs (f^*_{min}), the solution average (f^*_{avg}), the number of different optimal solutions found (N_x) and, finally, the average time to solve the optimization problem (Time_{avg}) in seconds.

<table>
<thead>
<tr>
<th></th>
<th>f^*_{min}</th>
<th>f^*_{avg}</th>
<th>N_x</th>
<th>Time_{avg} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>260</td>
<td>305</td>
<td>5</td>
<td>191</td>
</tr>
<tr>
<td>PSO</td>
<td>260</td>
<td>307</td>
<td>3</td>
<td>98</td>
</tr>
</tbody>
</table>

Analyzing the numerical results presented in the previous table, it is possible to verify that the minimum total time found by both algorithms is the same (260 min), the average of the solutions found is slightly higher in the PSO, and the number of optimal solutions found is higher in GA. Finally, the average time to solve the problem is better in the PSO, that means that PSO finds the problem solution faster than GA.

In both methods, it was obtained more than one optimal solution (three by the PSO and five by the GA), so the methods find different nurses schedules with the same minimum (260 min). This allows that the Health Care Center can choose one of those nurses’ schedules.

Figure 2 depicts one obtained solution using GA.

Fig. 2. Optimal nurses’ schedules using GA

Analyzing Fig. 2 it is possible to see that the minimum time needed to the last nurse perform all the visits and return to the Health Care Center is 260 min. This value is less than the related value in the manual schedule (369 min). Only two nurses have more than 3 patients — Nurse 6 and Nurse 12. This means that
the nurses’ schedule produced by the algorithm are more balanced in comparison with the Health Care Center schedule (Fig. 1).

Analyzing Fig. 2, it is possible to conclude that all real restrictions are met, accordingly to the data from the Health Care Center.

The next figure, Fig. 3, depicts one obtained solution using PSO algorithm.

![Optimal nurses' schedules using PSO](image)

From Fig. 3 it is possible to see that the minimum time needed to the last nurse perform all the visits and return to the Health Care Center was 260 min (the same value as the one obtained with GA). Both solutions obtained by both methods have a significant time reduction (109 min) when compared to the HUB manual planning, which was 369 min. However, the GA schedule is more homogeneous than the PSO schedule.

To show (in an easy and fast way) the time spent by each nurse, using both methods, and compare it with the related time obtained manually by the HUB, Table 7 list for each nurse (first row), the time needed to finish the home care visits done manually (second row), the time spent obtained using GA (third row) and the time spent obtained with PSO (fourth row).

<table>
<thead>
<tr>
<th>Nurses</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUB</td>
<td>221</td>
<td>260</td>
<td>369</td>
<td>212</td>
<td>86</td>
<td>90</td>
<td>241</td>
<td>70</td>
<td>194</td>
<td>90</td>
<td>240</td>
<td>183</td>
</tr>
<tr>
<td>GA</td>
<td>105</td>
<td>260</td>
<td>178</td>
<td>241</td>
<td>188</td>
<td>235</td>
<td>198</td>
<td>165</td>
<td>240</td>
<td>60</td>
<td>189</td>
<td>221</td>
</tr>
<tr>
<td>PSO</td>
<td>86</td>
<td>260</td>
<td>105</td>
<td>225</td>
<td>218</td>
<td>240</td>
<td>253</td>
<td>86</td>
<td>242</td>
<td>255</td>
<td>70</td>
<td>241</td>
</tr>
</tbody>
</table>
From the above table it is possible to state that with both algorithms, the maximum time spent by the nurses never exceeded 260 min. In turn, the maximum time spent by the nurses in HUB scheduling is 369 min (greater than both computational solutions).

4.1 Conclusions and Future Work

Since, in HUB, home care visits are planned manually and without computational support, this implies that the solution obtained may not be the best one. In this way, and in an attempt to optimize the process, it is necessary to use strategies to minimize the maximum time spent by each nurse on home care routes, without, however, worsening the quality of the provided services and, always, looking for the best schedules organization. Optimization can be used very advantageously in the context of Health Care Centers scheduling for home care aged people visits.

The scheduling problem of nurses in the HUB was efficiently solved using the GA and PSO methods. Moreover, the optimal solution was found quite fast. This approach represents a gain for all the involved people, health professionals and patients.

For future work, it is possible to reformulate the problem and take into account the number of vehicles available in the Health Care Center and use multi-objective approach to minimize not only the maximum time for each nurse, but also the total time spent by all nurses.

Acknowledgments. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

References