Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes


Abstract

Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032 bp (COI + 28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini novo nomen, Cristariini novo nomen and Lanceolariini novo nomen). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Understanding phylogenetic diversity is crucial for conservation prioritization of freshwater mussels (Bivalvia: Unionida), which are among the most threatened freshwater taxa in the world (IUCN, 2015; Lydeard et al., 2004). Due to their ecological and economic importance, interesting biological traits (e.g., a parasitic life with the reproductive dependence on a host fish and a particular form of mitochondrial inheritance called double uniparental inheritance; Barnhart et al., 2008; Breton et al., 2007; Hoeh et al., 1996, 2002a), scientific research on Unionida has grown in recent years (Haag, 2012; Lopes-Lima et al., 2014). However, taxon-based conservation efforts focused on the Unionidae are hindered by various phylogenetic and taxonomic uncertainties (e.g., Inoue et al., 2014; Pfeiffer et al., 2015), and many species, especially those outside of North America and Western Europe, have been assigned a Data Deficient status by the IUCN (Bogan and Roe, 2008; IUCN, 2015; Kohler et al., 2012).

The Unionidae is by far the most species rich family within the order Unionida, with 620 species in 142 genera (Bogan and Roe, 2008) widely distributed across the freshwater ecosystems of Europe, Asia, North America and Africa. The first classification of the global Unionidae fauna was attempted by Lea (1836, 1838, 1852, 1870), and later updated by Simpson (1900, 1914). These works, in which the marsupium (i.e., the gill structure where the eggs and larvae are brooded), anatomy, larvae type and umbo sculpturing were used as key classification characters, divided the Unionidae into two subfamilies, Unioninæae and Hyriinæae (Table 1). Subsequently, A.E. Ortmann performed a series of studies on North American taxa including additional anatomical classification characters and divided the Unionidae into three subfamilies: Unioninæae, Anodontinæae and Lampislinæae (Table 1: Ortmann, 1910, 1911, 1912, 1919, 1921; Ortmann and Walker, 1922). In discussing his classification, Ortmann (1912) noted the inadequacy of shell characters to define families and subfamilies due to widespread convergences in shell morphology; a problem that was further discussed by Prashad (1931). Apart from regional works (e.g., Frierson, 1927; Haas, 1940; Iredale, 1934), little progress was made on Unionidae classification until the middle of the twentieth century, when Modell and Haas published their comprehensive classification systems (Table 1: Haas, 1969a,b; Modell, 1942, 1949, 1964). Both Haas and Modell classification systems used a set of morphological and anatomical characters, but relied heavily on shell morphology. Haas (1969a,b) classified the Unionidae into six subfamilies. One of these, i.e., the Hyriinæae, combined species from South America and Australasia and would later be recognized as a distinct family. Modell (1942, 1949, 1964) developed a more complex and inflated classification system, which organized the Unionidae genera in distinct families and multiple subfamilies. Both authors’ use of highly variable conchological characters for classification above the genus level led to incoherent associations. Nevertheless, the work by Haas has been widely recognized as the more reliable in terms of representing generic and subgeneric distinctiveness and is considered as fundamental in establishing the main genera of the Unionida and in particular, the Unioninæae (Roe and Hoeh, 2003). Concurrent with the work of Haas (1969a,b) and Modell (1942, 1949, 1964), an even more inflated classification scheme was proposed by Starobogatov (1970) and Zatravkin and Bogatov (1987), who relied on conchological differences and focused on the curvature of the frontal section of the valves. This system is merely typological and was disregarded by most of the western school of malacologists (see Graf, 2007) and emergent Russian studies (Boilotov et al., 2015; Klishko et al., 2014).

A comprehensive molecular phylogenetic study of the Unionidae has not been attempted to date, primarily due to the difficulties in developing a dataset of sufficient geographical and species coverage. The first classification system using a phylogenetic framework was published by Heard and Guckert (1970; Table 1) for the North American Unionida fauna. Disregarding shell characters, these authors used a broad anatomical and reproductive behavior character set within a phylogenetic context. Their analyses resulted in the division of the North American Unionidae into two families and several subfamilies. The subsequent development of powerful molecular and statistical tools, providing a basis for more objective approaches, has led to the publication of several studies on unionid phylogeny (e.g., Campbell and Lydeard, 2012a, b; Campbell et al., 2005; Davis, 1983, 1984; Davis and Fuller, 1981; Davis et al., 1977, 1981; Graf and Cummings, 2006; Hoeh et al., 1998, 2001, 2002b, 2009; Pfeiffer and Graf, 2013, 2015; Roe and Hoeh, 2003; Whelan et al., 2011; Zanatta and Murphy, 2006). In many of these studies, unionid genera or species that had been identified by morphological characters were not consistent with those revealed through molecular phylogenetic analyses (e.g., Campbell and Lydeard, 2012a,b; Nagel and Badino, 2001; Roe and Hoeh, 2003). Although the vast majority of these molecular studies have focused almost exclusively on North American and European taxa, geographic and taxonomic sampling has recently increased, particularly in Africa (Elderkin et al., 2016; Graf, 2013; Whelan et al., 2011) and Asia (Huang et al., 2002; Pfeiffer and Graf, 2013, 2015; Zhou et al., 2007; Zieritz et al., 2016).

Recent molecular phylogenetic studies have achieved considerable progress in describing the main divisions within the Unionidae (Campbell and Lydeard, 2012a, 2012b; Graf and Cummings, 2006; Pfeiffer and Graf, 2013, 2015; Whelan et al., 2011). The status of the North American Ambilamnae with four recognized tribes has been recently confirmed (Table 1: Campbell and Lydeard, 2012a,b; Campbell et al., 2005). Studies including species from Asia and the Indotropics examined the subfamily Parreysiinae in detail and recognized several subfamilies (Table 1: Pfeiffer and Graf, 2015; Whelan et al., 2011). Despite the considerable recent progress (Huang et al., 2002; Pfeiffer and Graf, 2013, 2015; Zhou et al., 2007), the vast majority of unionid genera from the Eastern Palearctic and the Indotropics have never been analyzed in a modern phylogenetic framework.

Based on bibliographical research, the classification of the Unionidae was recently reviewed, establishing the currently accepted subdivisions of the Unionidae (Carter et al., 2011; Table 1). This classification divided the family into six subfamilies: the Ambilamnae with a North and Central American distribution; the Parreysiinae with a disjunct distribution primarily in Sub-Saharan Africa and the Indian subcontinent; the Modellinaeae with a single species from Thailand; the Rectidentinae with a South East Asian distribution; and two subfamilies, the Unioninae and Gondinea, distributed through most of Asia, Europe, North Africa and west coast of North America.

In order to increase the success of ongoing and future management efforts and to inform conservation priorities more effectively, a better understanding of the evolutionary history of freshwater mussels is necessary. Our objective herein is to improve the understanding of unionid phylogeny through analysis of a combination of nuclear and mitochondrial molecular markers from a wide coverage of genera. In detail, this study aims to: (i) resolve the main phylogenetic relationships within the Unionidae; (ii) discuss the systematics, taxonomy and distribution of the recovered unionid subdivisions (subfamilies and tribes); and (iii) compare the obtained classification with those based on morphological characters.

Table 1. Phylogenetic relationships among the subfamilies and tribes of the Unionidae. The relationships are based on a phylogenetic analysis of nuclear and mitochondrial DNA sequences. The tree was inferred using Maximum Likelihood methods and is rooted with the family Pachyceridae. The bootstrap support is shown at each node. The branches of the tree are colored according to phylogenetic clusters (A-D).
2. Materials and methods

2.1. Taxon sampling

All analyzed taxa are listed in Table 2. Taxa were chosen to cover all available genera of Unionidae subfamilies. Exceptions were made with regard to the North American subfamily Ambleminae (only up to three species per tribe were included) and the African/Asian subfamily Parreysiinae, since both of these subfamilies were studied in detail elsewhere (Campbell and Lydeard, 2012a,b; Campbell et al., 2005; Whelan et al., 2011). Taxa representative from all families of the subclass Palaeoheterodonta were also included (comprising all recognized Unionida families and from Neotrigonia, the marine sister group of the Unionida) (Giribet and Wheeler, 2002).

2.2. DNA extraction, amplification and sequencing

Whole genomic DNA was extracted from small foot tissue samples preserved in 96% ethanol using a standard high-salt protocol (Sambrook et al., 1989) or the Jetquick tissue DNA Spin Kit (Genomed) following the manufacturer's protocol. PCR conditions for both markers, the female lineages of mitochondrial cytochrome c oxidase subunit 1, COI (LCO22me2 + HCO700dy2; Walker et al., 2006, 2007; and LCO1490 + HCO2198; Folmer et al., 1994) and 28S ribosomal RNA (28S-RD1.3f and 28S-rD4b; Whiting, 2002) were described in Froufe et al. (2014). Annealing temperatures of 48°C were used for COI (LCO1490 + HCO2198) and 28S; and 50°C for COI (LCO22me2 + HCO700dy2). Amplified DNA templates were purified and sequenced by the commercial company Macrogen using the same primers.

2.3. Phylogenetic analyses

Two concatenated (COI + 28S) data sets were assembled, the Palaeoheterodonta dataset with representatives from each of the families of the Palaeoheterodonta (Appendix A) and, in order to decrease the number of poorly aligned positions of the 28S, the Unionidae dataset with only representatives of the Unionidae (Appendix B). Both datasets were aligned using the stand-alone version of GUIDANCE (version 1.5, Penn et al., 2010) with the MAFFT multiple sequence alignment algorithm (version 7, Katoh and Standley, 2013). The following GUIDANCE parameters were used: GUIDANCE score algorithm; 100 bootstrap replicates; a sequence cutoff score of 0.0 (no sequence removal); a column cutoff score of 0.0 (no columns removal); global pair alignment. Incongruence Length Difference (ILD) tests were performed to investigate incongruence between them (Farris et al., 1994).

The best-fit models of nucleotide substitution under the corrected Akaike Information Criterion were selected using JModelTest 2.1.8 (Darriba et al., 2012) for each partition of the subsequent analyses.

For the Palaeoheterodonta dataset (Appendix A), a single scheme with 4 partitions was applied, model GTR + I + G was optimal for the first and third COI codon positions and for the whole 28S, while model F81 was optimal for the second COI codon positions. For the Unionidae dataset (Appendix B) more comprehensive analyses were executed including two distinct partitioning schemes; the first with two partitions corresponding to each gene fragment (COI and 28S) and the second with four partitions corresponding to the three codon positions of COI and one for 28S. For the scheme with 2 partitions, model GTR + I + G was optimal for both. For the scheme with 4 partitions, model GTR + I + G was optimal for the first COI codon positions and for the 28S, while model F81 was optimal for the second COI codon positions. Finally, model GTR + G was optimal for the third positions of COI.
Table 2
Specimens analyzed. (U) Unknown country; (>) not generated from a single individual. Taxonomy follows Table 3.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>COI</th>
<th>28S</th>
<th>Country</th>
<th>Reference</th>
<th>Voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIONIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANODONTINAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. marginita Say, 1818</td>
<td>AF156502</td>
<td>AF400688</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>Anodonta anatina (Linnaeus, 1758)</td>
<td>KX22632</td>
<td>KX22588</td>
<td>Russia</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Anodonta cygnea (Linnaeus, 1758)</td>
<td>KX22633</td>
<td>KX22589</td>
<td>Italy</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Anodonta nuttiliana Lea, 1838</td>
<td>KX22634</td>
<td>KX22590</td>
<td>USA</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Lasigonia compressa (Lea, 1829)</td>
<td>KX22635</td>
<td>KX22591</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>Pseudanodonta complanata (Rossnässler, 1835)</td>
<td>KX22661</td>
<td>KX22617</td>
<td>Ukraine</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Pyganodon grandis Say, 1829</td>
<td>KX22664</td>
<td>KX22618</td>
<td>Laos</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Simpsonia ambigua Say, 1825</td>
<td>KX22665</td>
<td>KX22622</td>
<td>USA</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Struthius undulatus (Say, 1817)</td>
<td>KX22666</td>
<td>KX22623</td>
<td>USA</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>CRISTARINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. arcaeformis (Heude, 1877)</td>
<td>KX22667</td>
<td>KX22624</td>
<td>China</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>A. plicata (Leach, 1814)</td>
<td>KX22668</td>
<td>KX22625</td>
<td>Vietnam</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>An. lucida (Heude, 1877)</td>
<td>KX22669</td>
<td>KX22626</td>
<td>China</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>An. woodiana (Lea, 1834)</td>
<td>KX22670</td>
<td>KX22627</td>
<td>Vietnam</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>LANCEOLARIINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. lanceolata (Lea, 1856)</td>
<td>KX22671</td>
<td>KX22628</td>
<td>China</td>
<td>Wang et al. (2016); This study</td>
<td></td>
</tr>
<tr>
<td>L. gladiola (Griffith &amp; Pidgeon, 1833)</td>
<td>KX22672</td>
<td>KX22629</td>
<td>Vietnam</td>
<td>This study NCSM84916</td>
<td></td>
</tr>
<tr>
<td>N. campestris (Griffith &amp; Pidgeon, 1833)</td>
<td>KX22673</td>
<td>KX22630</td>
<td>Vietnam</td>
<td>This study NCSM84945</td>
<td></td>
</tr>
<tr>
<td>N. pictorum (Linnaeus, 1758)</td>
<td>KX22674</td>
<td>KX22631</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>R. sumatrensis (Lea, 1856)</td>
<td>KX22675</td>
<td>KX22632</td>
<td>Thailand</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>R. pacifica (Lea, 1856)</td>
<td>KX22676</td>
<td>KX22633</td>
<td>Vietnam</td>
<td>This study NCSM84902</td>
<td></td>
</tr>
<tr>
<td>N. camerounensis Dunker, 1852</td>
<td>KX22677</td>
<td>KX22634</td>
<td>Laos</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N. ingallsianus (Lea, 1856)</td>
<td>KX22678</td>
<td>KX22635</td>
<td>Laos</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N. sagittarius (Lea, 1856)</td>
<td>KX22679</td>
<td>KX22636</td>
<td>Laos</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Rectidens samartensis (Dunker, 1852)</td>
<td>KX22680</td>
<td>KX22637</td>
<td>Malaysia</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>

| GONDWANE |     |     |             |                            |               |
| CHAMBERLAININII |     |     |             |                            |               |
| Chamberlainia hainesiana (Lea, 1856) | KX22681 | KX22638 | Thailand | This study |
| Sinonannia cumingii (Lea, 1852) | KX22682 | KX22639 | Thailand | This study |
| LAMPROTULINII |     |     |             |                            |               |
| Lamprotula caveata (Heude, 1877) | KX22683 | KX22640 | Thailand | This study |
| L. leachi (Griffith & Pidgeon, 1833) | KX22684 | KX22641 | Thailand | This study |
| Potamoides littoralis (Cuvier, 1798) | KX22685 | KX22642 | Thailand | This study |
| Pronodularia japonica (Lea, 1859) | KX22686 | KX22643 | Japan | This study NCSM27183 |
| GONIDEINII |     |     |             |                            |               |
| Gonidea angulata (Lea, 1852) | KX22687 | KX22644 | USA | Gustafson and Iwamoto (2005); Graf (2002) |
| Leguminia wheateleyi (Lea, 1862) | KX22688 | KX22645 | Turkey | This study |
| Microcondylaea bonellii (A. Ferussac 1827) | KX22689 | KX22646 | Italy | This study |
| Solenina carinata (Heude, 1877) | KX22690 | KX22647 | China | This study |
| Solenina olevata (Heude, 1877) | KX22691 | KX22648 | China | Unpublished; this study |
| PSEUDODONTINII |     |     |             |                            |               |
| Phisbyconcha compressa (Martens, 1860) | KX22692 | KX22649 | Thailand | This study |
| Phisbyconcha exilis (Lea, 1852) | KX22693 | KX22650 | Vietnam | Graf (2002); this study |
| Pseudododon cambodjensis (Petit de la Saussaye, 1865) | KX22694 | KX22651 | Thailand | This study NCSM84884 |
| Pseudododon mouhotii (Lea, 1863) | KX22695 | KX22652 | Laos | This study NCSM84903 |
| Incertae sedis (GONIDEINII) |     |     |             |                            |               |
| Solenina triangularis (Heude, 1885) | KX22696 | KX22653 | China | This study |

(continued on next page)
Gln = glochidial shell length (l) was calculated following Davis and Fuller (1981) where characterize and compare glochidial size, the glochidial size index able literature and direct observations of the analyzed taxa. To

RaxML 8.0.0 (Stamatakis, 2014) where GTR + G + I model was

was defined with intermediate Gln values between the two other

was used to define the class ‘large’; and the ‘medium’ class size

Hoggarth (1999); the smaller size range of Quadrulini was used (Table C1) and those included in Barnhart et al. (2008) and mined using all glochidia measurements collected for this study

2.4. Review of morphological, anatomical, and behavioral traits

A table of morphological characters commonly used for Unionidae systematics was constructed using a compilation of the available literature and direct observations of the analyzed taxa. To

on both of the following (COI + 28S) datasets, no indels were

Distribution maps were constructed using data available from the IUCN database (IUCN, 2015), the Mussel Project website (Graf and Cummings, 2016), the North Carolina Museum of Natural Sciences database (NCMNS, 2016), and additional reference works (Bogatov, 2012; Bogatov and Starobogatov, 1992; Brandt, 1974; Clarke, 1981; Cyr et al., 2007; Doucet-Beaupré et al., 2012; Haas, 1969a,b; He and Zhuang, 2013; Howells et al., 1989; Kondko, 2008; Klishko, 2001, 2003; Kondo, 2008; Moskvicheva, 1973a,b; Nedeau et al., 2009; Prozorova and Bogatov, 2006; Subba Rao, 1989; Vinar et al., 2007; Zatravkin and Bogatov, 1987; Zhadin, 1938). Because distribution data were gathered and compiled from very distinct sources, ranging from georeferenced data points, hydrographic basins and geographical regions or countries, the distributions on the maps are represented with various patterns (e.g., political borders or hydrographic basins).

3. Results and discussion

Previous phylogenetic studies of the Unionidae failed to include most of the genera, mainly those from the Eastern Palearctic and Indotropical ecoregions. We were able to clarify the phylogeny within Unionidae by the inclusion of samples from a wide coverage of genera and geographic distribution.

On both of the following (COI + 28S) datasets, no indels were observed in the COI alignments and no stop codons were found

2.5. Distribution

Table 2 (continued)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>COI</th>
<th>28S</th>
<th>Country</th>
<th>Reference</th>
<th>Voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBILEMINAE</td>
<td>AMBILEMINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambelina plicata (Say, 1817)</td>
<td>APUS65841</td>
<td>AF305385</td>
<td>USA</td>
<td>Hoeh et al. (1998); Graf (2002)</td>
<td></td>
</tr>
<tr>
<td>LAMPSILINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinonaias ligamentina (Lamarck, 1819)</td>
<td>AF156517</td>
<td>DQ191420</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>Lamphis cardium Rafinesque, 1820+</td>
<td>AF710653</td>
<td>AF305386</td>
<td>USA</td>
<td>Giribet and Wheeler (2002); Graf (2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEUROBEMINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliptio complanata (Lightfoot, 1786)</td>
<td>AF156307</td>
<td>AF400690</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>Pleurobema sintoni (Rafinesque, 1820)</td>
<td>AF156509</td>
<td>DQ191418</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf and Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>QUADRULINI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrula quadrula (Rafinesque, 1820)</td>
<td>AF156511</td>
<td>DQ191417</td>
<td>USA</td>
<td>Graf and Foighil (2000); Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>Quadrula verrucosa (Rafinesque, 1820)</td>
<td>DQ191413</td>
<td>DQ191416</td>
<td>USA</td>
<td>Cummings (2006)</td>
<td></td>
</tr>
<tr>
<td>PARREYSINIAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coelatura squamosa (Cailliaud, 1827)</td>
<td>JN243892</td>
<td>JN243870</td>
<td>Egypt</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Lamellidens corriani (Lea, 1834)</td>
<td>JN243903</td>
<td>JN243881</td>
<td>Burma</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Oxymania pugio (Benson, 1862)</td>
<td>JN243899</td>
<td>JN243879</td>
<td>Burma</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Parreysinia parreysiana (Theobald, 1873)</td>
<td>JN243900</td>
<td>JN243876</td>
<td>Burma</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>TRICONIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neotrigonia margaritacea (Lamarck, 1804)</td>
<td>NMU56850</td>
<td>AF400695</td>
<td>Australia</td>
<td>Hoeh et al. (1998); Graf (2002)</td>
<td></td>
</tr>
<tr>
<td>HYRIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrilla depressa (Lamarck, 1819)</td>
<td>AF156496</td>
<td>AF305375</td>
<td>Australia</td>
<td>Graf and Foighil (2000); Graf (2002)</td>
<td></td>
</tr>
<tr>
<td>Vesulusio ambiguus (Philippi, 1847)</td>
<td>KC429106</td>
<td>KC429444</td>
<td>Australia</td>
<td>Sharma et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>MARGARITIFERIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumberlandia monodonta (Say, 1829)</td>
<td>AF156497</td>
<td>AF305382</td>
<td>USA</td>
<td>Graf and Foighil (2000); Graf (2002)</td>
<td></td>
</tr>
<tr>
<td>Margaritifera margaritifera (Linnaeus, 1758)</td>
<td>KC429108</td>
<td>KC429446</td>
<td>(Europe)</td>
<td>Sharma et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>ETHERIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etheria elliptica Lamarck, 1807</td>
<td>KP184887</td>
<td>KP184873</td>
<td>Zambia</td>
<td>Graf et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>IRIDINIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspatharia pfeifferiana (Bernardi, 1860)</td>
<td>JN243885</td>
<td>JN243883</td>
<td>Zambia</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Chambardia wahibergi (Krauss, 1848)</td>
<td>JN243886</td>
<td>JN243864</td>
<td>Zambia</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Mutela rostrata (Rang, 1835)</td>
<td>JN243884</td>
<td>JN243862</td>
<td>Egypt</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>MULLERIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodontites elongata (Swainson, 1823)</td>
<td>JN243888</td>
<td>JN243866</td>
<td>Peru</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Mycetopoda siliquosa (Spix &amp; Wagner, 1827)</td>
<td>JN243887</td>
<td>JN243865</td>
<td>Peru</td>
<td>Whelan et al. (2011)</td>
<td></td>
</tr>
</tbody>
</table>
after translating the sequences to amino acids. The ILD tests found no significant phylogenetic conflict between the COI and 28S for the Palaeoheterodonta (p = 0.95) and the Unionidae (p = 0.94) datasets.

The Palaeoheterodonta dataset (COI + 28S) included 81 species in 55 genera, with a total of 1091 bp (COI: 597 bp, 28S: 494 bp). Since the same topology in the supported nodes was obtained in the resulting phylogenetic trees, the BI4 (Bayesian Inference with 4 partitions, see methods) topology is here presented in Fig. 1. These analyses revealed the monophyly of the Unionidae in all analyses with six supported subfamilies supported by the BI analysis (Anodontinae, Unioninae, Rectidentinae, Gonideinae, Amblemi- nae, and Parreysiinae) showing the Parreysiinae as a sister clade to all of the other Unionidae.

The dataset including only Unionidae taxa spanned 70 species in 46 genera, with a total of 1032 bp (COI: 597 bp, 28S: 435 bp) aligned nucleotides. All resulting phylogenetic trees yielded the same topology up to the tribal level, being the BI4 (Bayesian Inference with 4 partitions, see methods) topology presented. Both BI topologies were generally associated with higher bootstrap support levels than ML topologies. Furthermore, the BI4 topology resulted in slightly higher bootstrap values than the BI2 topology, presumably due to distinct COI mutation rates.

The Unionidae is divided in two major clades, which are well supported in all analyses and partition schemes, i.e., Anodontinae + Unioninae and Rectidentinae + Gonideinae + Amblemi- nae (Fig. 2). At the subfamily level most clades are supported by the Bayesian analyses, with the Rectidentinae also being supported by both ML analyses (Fig. 2). At the tribal level the same trend is observed, with all four analyses supporting Contradentini, Rectidentini, Chamberlainiini, Lamprotulini, with the remaining tribes being supported mostly by BI analyses only.

The subfamily Anodontinae is divided into three tribes (i.e., Anodontini, Cristariini nomen novum and Lanceolariini nomen novum), and the subfamily Unioninae is not well resolved, with Unionini being the only supported tribe. Available tribe names for the currently unsupported group (sister to the Unionini) include Aucticostinae Starobogatov, 1967 and Norularini Starobogatov and Zatravkin, 1987. The subfamily Rectidentinae is sister to Gonideinae + Amblemiinae and encompasses two tribes (i.e., Contradentini and Rectidentini). Both Gonideinae and Amblemiinae are divided into four tribes each (see Fig. 2). In summary, our molecular phylogenetic analyses revealed division of the Unionidae into 6 subfamilies and 18 tribes, three of which are named here for the first time. Revisions pertaining to the subfamil- iar and tribal classification within the Unionidae are discussed here along with a number of number of lower-level phylogenetic and taxonomic considerations.

To complement the present molecular analyses, seven morpho- logical, anatomical and behavioral characters commonly used in traditional classifications of the Unionidae are summarized for each taxon in Table C1.

Glochidial shape is diagnostic in dividing the Anodontinae + Unioninae (triangular) and Rectidentinae + Gonideinae + Amblemiinae (bilaterally asymmetrical or semi-elliptical) clades (Table C1). No single morpho-behavioral character analyzed herein is diagnostic of subfamilies within these clades. However, within subfamilies, certain tribes are characterized by unique diagnostic characters. Within Anodontinae, four characteristics (shell shape, hinge structure, glochidial size and brooding period) separate the Lanceolariini from the Anodontini + Cristariini. Additionally, all taxa within the Lanceolariini analyzed are characterized by nodul- ous umbo sculpture, although this morphological character is highly variable within all other subfamilies and tribes (Table C1). Within Rectidentinae, glochidial shape is diagnostic in separating the Contradentini (bilaterally asymmetrical) and Rectidentini (semi-elliptical). Among the four tribes in Gonideinae, the Chamberlainin taxa are unique in exhibiting ectobranchous marsupia (Table C1).

3.1. Classification system

Based on the present results, a new classification of the Unioni- dae is presented, including the description of three new tribes: Cristariini Lopes-Lima, Bogan and Froufe, 2016; Lanceolariini Froufe, Lopes-Lima and Bogan, 2016; and Chamberlainiini Bogan, Froufe and Lopes-Lima, 2016 (Table 3).

3.2. Anodontinae Rafinesque, 1820 phylogeny and tribal classification

The subfamily status of the Anodontinae was first defined by Rafinesque in 1820 and properly Latinized by Fleming in 1828. The subfamily status was retained in many of the classical classifi- cations well in to the 20th century (e.g., Davis and Fuller, 1981; Haas, 1969a,b; Heard and Guckert, 1970; Modell, 1964; Ortmann, 1910). Subsequent studies demoted Anodontinae to a tribe within Unioninae due to the shared hooked type and subtriangular exter- nal shape of the glochidia (Bieler et al., 2010; Carter et al., 2011; Graf, 2002; Graf and Cummings, 2007). However, the rank change of Anodontinae into Anodontini has been recently disputed based on morphology discrepancies in glochidia morphology (Huang et al., 2013). Anodontinae and Unioninae are here recovered as sister clades and due to the ancient divergence of the two clades are herein considered as subfamilies, in accordance with traditional classifications. Within Anodontinae, we recognize three distinct tribes. In traditional classifications, this subfamily was character- ized by a set of distinctive morphological (e.g., large and ovate thin shells, and large triangular and hooked glochidia), anatomical (e.g., demibranchs with perforated septa, secondary water tubes in the outer deribranchs, and marupium in the external demibranch pair that distend laterally upon gravidity) and ecological (e.g., most species seem to be generalists concerning habitat and host fish) characters. Although all of the above characters are found in most of the species within Anodontini and Cristariini, the Lanceolariini present characters more similar to those of the Unioninae (i.e., shell size and form, glochidial size, and tachytictia).

Members of the Anodontinae have a wide distribution in the Northern Hemisphere, not occurring in most of the Indotropical, and glaciated or desert regions (Fig. 3).

3.2.1. Tribe Anodontini Rafinesque, 1820

Type Genus: Anodonta Lamarck, 1799
Type Species: Mytilus cygneus Linnaeus, 1758
Comments: The Anodontini include one supported clade that contains all analyzed Anodontinae genera from Eastern North America, while the relationships among the Anodonta and Pseudan- odonta species are not well resolved. The Anodontini encompass the genera Alasmidonta, Anodonta, Lasigmona, Pseudanodonta, Pyganodon, Simpsonia, Strophitus (Fig. 2), Anodontoides, Arcidens, and Utterbackia (Table 3; Breton et al., 2011; Inoue et al., 2014; Lydeard et al., 1996; Zanatta et al., 2007). Due to the lack of molecular data, two genera usually assigned to this tribe, i.e., Simpsonella from the Philippines and Pegus from North America (Graf and Cummings, 2016; Haas, 1969a,b), are not included in the present molecular analyses. Placement of both these genera within the tribe thus remains to be tested by molecular methods. This will be of particular interest regarding Simpsonella, which has a disjunct distribution and has been placed within the Contradentini in other studies (Modell, 1942, 1964). We recovered two main clades within the Anodontini: one with Palearctic genera including the...
type genus *Anodonta* that is also present in the West coast of North America and the other including all East coast North American genera (Figs. 2 and 3). The relationships among and within genera in each of these clades are not well resolved and should be further investigated.

**Diagnosis:** Shell is commonly thin and ovate to elongate but with some exceptions, mainly in *Alasmidonta* and *Lasmigona* spp. (Table C1). Hinge is generally toothless or with vestigial teeth in some genera e.g., *Alasmidonta*, *Lasmigona* and *Strophitus*. Umbo sculpture is varied and composed of double-looped and/or pseudo-concentric and/or single-looped ridges, which are sometimes wrinkled or nodulous. Glochidia are large, triangular, and ventrally hooked with spines (Table C1).

**Distribution:** The Anodontini have a disjunct distribution from the Western Palearctic to the Transbaikalia and on both North American coasts (Fig. 3). Almost all Eastern Asian *Anodontinae* species previously ascribed to *Anodonta* (e.g., *A. woodiana* and *A. arcaearma*formis) have later been transferred to other genera that are now placed outside Anodontini (Haas, 1969a,b; Kondo, 2008). The only *Anodonta* species still recognized from East Asia, *Anodonta beringiana*, should be reassigned to the genus *Sinanodonta* (Chong et al., 2008). The presence of the tribe Anodontini in Central America and Middle East is pending further evaluation of the phylogenetic status of *Anodonta lurulenta* Morelet, 1849, *Anodonta pseudodopsis* Locard, 1883 and *Anodonta vescoiana* Bourguignat, 1856.

### 3.2.2. Tribe Cristariini Lopes-Lima, Bogan and Froufe, nomen novum

**Type Genus:** *Cristaria* Schumacher, 1817

**Type Species:** *Cristaria tuberculata* Schumacher, 1817; junior synonym of *Dipsas plicata* Leach, 1815.

**Comments:** The Cristariini include one supported clade composed by the genera *Anemina, Cristaria, Pletholophus* and *Sinanodonta* (Fig. 2; Table 3). The type genus *Cristaria* is not monophyletic in the current analyses and since *Cristaria plicata* is the type species, *Cristaria tenuis* is here reassigned to *Pletholophus* Simpson, 1900 following Ð ng et al. (1980), He and Zhuang (2013) and Simpson (1900, 1914). Many species have been assigned to *Sinanodonta*, primarily by the Russian school of nomenclature (Graf, 2007; Haas, 1969a), but validity of these placements should be tested using molecular tools. *Sinanodonta lucida* was first described as *Anodonta lucida* and then assigned to *Sinanodonta* (Ng et al., 1980) but both generic attributions are still being used (e.g., Huang et al., 2013; Pfeiffer and Graf, 2013). Additionally, recent studies based on morphological data consider *S. lucida* as a synonym of *S. woodiana* (Graf and Cummings, 2016; He and Zhuang, 2013). Due to the high genetic distance between these two taxa (12.3%; COI uncorrected p-distance), *Sinanodonta woodiana* and *Sinanodonta lucida* are here recognized as two distinct species. Finally, as mentioned above, *Anodonta beringiana*, although
not included in the present analysis, should be placed within the Cristariini though its generic assignment remains to be investigated.

**Diagnosis:** Shell is usually thin, of elliptical to oval shape, with or without a posterior dorsal wing. Umbo rather low, sculpture usually consisting of pseudo-concentric folds that are nearly parallel to growth lines. Periostracum is usually rayed. Hinge is lacking in *Anemia* and *Sinanodonta*, but reduced lamellar lateral and pseudocardinal teeth may be present in *Cristaria* and *Pletholophus*.

**Distribution:** The native range of Cristariini spans from Indo-China to China, Korea, Japan, the Sakhalin Island, Amur Basin, Kamchatka and Chukotka Peninsulas (in Russia) to the Aleutians and the Pacific Coastal Region of North America, where it may be found as far south as Oregon (Fig. 3).

### 3.2.3. Tribe Lanceolariini Froufe, Lopes-Lima and Bogan, nomen novum

**Type Genus:** *Lanceolaria* Conrad, 1853

**Type Species:** *Unio grayanus* Lea, 1834

**Comments:** The tribe Lanceolariini is sister to all other Anodontinae. Most of its shell morphological characteristics appear more similar to the subfamily Unioninae (e.g., well-developed hinge teeth, medium sized glochidia and tachytictia; Table C1). It is therefore not surprising that all previous classifications placed the genera of this tribe within the Unioninae rather than in Anodontinae (e.g., *Haas, 1969a, 1969b; Starobogatov, 1970*). Lanceolarini encompasses two genera, i.e., *Arconaia* Conrad, 1865 and *Lanceolaria* Conrad, 1853, though this should be further investigated considering that our results indicate paraphyly of *Lanceolaria*, giving support for the monotypic status of Lanceolariini with *Lanceolaria* as the single genus.

**Diagnosis:** Shell is rather thick, of elongate or lanceolate shape and in some taxa, with antero-posterior torsion. Umbo is low and positioned near the anterior end. Umbo sculpture is strictly nodulose and usually restricted to the umbo area but in some cases more widespread. Pseudocardinal teeth are well developed and long; lateral teeth are straight and thick.

**Distribution:** Lanceolariini are restricted to Far East Asia, from the Amur River basin (Russia) to Japan, Korea, the Pacific basins of China and Vietnam (Fig. 3).

### 3.3. Unioninae Rafinesque, 1820 phylogeny and tribal classification

The Unioninae were one of the first defined subfamilies, and the subfamily level has been retained in all subsequent classifications of the Unionidae (Table 1). Until the middle of the 20th century, this subfamily encompassed almost all of the unionid genera of Europe, Africa and Asia with the exception of those assigned to Anodontinae (*Haas, 1969a,b*). It later became obvious that the Unioninae represented a simple collection of very distinct groups that were not related or similar in most of their characters. In this context, the Unioninae were subdivided by Modell (1942, 1964)
Table 3
Classification of the Unionidae based on the present analyses. (†) Not included in the present study.

**ANODONTINAE** Rafinesque, 1820
- Anodontinae Rafinesque, 1820
  + Alasmidontinae Rafinesque, 1820
  + Strophitinae Starobogatov, 1970
  + Pseudanodontinae Starobogatov, 1970
  + Brachanodontinae Bogatov, Sayenko and Starobogatov, 2002
- Arideinae Simpson, 1900 [† Arkosinia Ortman & Walker 1912]
- Arideinae Say, 1818
- Arideinae Lamarck, 1799
- Arideinae Simpson in F.C Baker, 1898
- Arideinae Simpson, 1914
- Strophitus Rafinesque, 1820
- Uterbackia F.C. Baker, 1927

**CRISTARIINAE** Lopes-Lima, Bogan and Froufe, Nom. Nov.
- Anemini Haas, 1969
- Cristaria Schumacher, 1817
- Pletholopus Simpson, 1900

**SINODONTINAE** Modell, 1945
- Lanceolarini Froufe, Lopes-Lima and Bogan, Nom. Nov.
- Acroonidae Conrad, 1865
- Lanceolaria Conrad, 1867

**ANODONTINAE (incertae sedis)**
- Pegas Simpson, 1900
- Simponellinae Cockrell, 1903

**UNIONINAE** Rafinesque, 1820
+ Cafferiinae Modell, 1942
- Unionininae Rafinesque, 1820
+ Cafferiinae Modell, 1942
- Uns Philipson in Retzius, 1788

**UNIONINAE (incertae sedis)**
  + Acuticosta Simpson, 1900
  + Cuneopsis Simpson, 1900
  + Inversiunio Hahe, 1991
  + Lepidoesma Simpson, 1896
  + Nodularia Conrad, 1853
  + Rhombuniopectus Haas, 1920

**SCHISTODESMUS** Simpson, 1900
- Rectidentinae Modell, 1942
  + Hyriospinae Modell, 1942

**RECTIDENTINAE** Modell, 1942
- Contraheadininae Modell, 1942
- Physuninii Starobogatov, 1970
- Contrads Haas, 1913
- Physunio Simpson, 1900
- Trompeozodeus Simpson, 1900
- Rectidinina Modell, 1942
  + Limnoscaphini Lindholm, 1932

**HYRIOPTERINAE** Simpson, 1900
- Hyriots Simpson, 1900

**GONIDEINAE** Ortman, 1916
+ Legumininae Starobogatov, 1970
- Chamberlainia Simpson, 1900
- Sinohyriopsis Starobogatov, 1970
- Lamprotulinae Modell, 1942
  + Physuninii Starobogatov, 1970
  + Lamprotula Simpson, 1900
  + Potomoida Swainson, 1840
  + Pronodularia Starobogatov, 1970
- Gonideinae Ortman, 1916
  + Legumininae Starobogatov, 1970
- Gonidea Ortman, 1957
- Leguminaea Ortman, 1965
- Microconylea Vest, 1866
- Solenaia Ortman, 1869
- Pseudodontini Frierson, 1927
- Pseudodon Gould, 1844
- Philbyconcha Simpson, 1900

**GONIDEINAE (incertae sedis)**
+ Discomya Simpson, 1900
+ Inversidens Haas, 1911

**Solenaias triangularis**

**AMBLEMINAE** Rafinesque, 1820
- Amblematae Rafinesque, 1820
- Regionalia Campbell and Lydeard, 2012
- Lampisulinae hering 1901
  + Propterini Hannibal, 1912
  + Cyprogeniini Starobogatov, 1970
- Dromini Starobogatov, 1970
- Friesoniini Starobogatov, 1970
- Glibulini, Starobogatov, 1970
- Medionidinae Starobogatov, 1970
- Palaearini Starobogatov, 1970
- Pileini Bieler et al. 2010
- Poponaiadini Heard and Guckert, 1970
- Psychobronchini Starobogatov, 1970
- Actinoonias Crosse & Fischer, 1894
- Arotoualas von Martens, 1900
- Cyprogenia Agassiz, 1852
- Cyroonias Crosse & Fischer, 1894
- Dromus Simpson, 1900
- Ellipsuria Rafinesque, 1820
- Epilabidion Starobogatov, 1970
- Friesonia Ortman, 1912
- Glibula Conrad, 1853
- Hamiota Roe & Hartfield, 2005
- Lampsiis Rafinesque, 1820
- Leniax Rafinesque, 1831
- Leptodea Rafinesque, 1820
- Ligumia Swainson, 1840
- Medionidae Simpson, 1900
- Obliquaria Rafinesque, 1820
- Obvoria Rafinesque, 1819
- Plecostomus Conrad, 1853
- Poponaias Frierson, 1927
- Potamidus Rafinesque, 1818
- Psychobranchus Simpson, 1900
- Toxolasia Rafinesque, 1831
- Truncilla Rafinesque, 1819
- Venusconcha Frierson, 1927
- Villosa Frierson, 1927
- Pleurobemini Hannibal, 1912
+ Elliptonimini Modell, 1942
- Elliptitoidea Frierson, 1927
- Fusconia Simpson, 1900
- Hemistena Rafinesque, 1820
- Plethobasus Simpson, 1900
- Pleurobonas Rafinesque, 1819
- Pleuroonias Frierson, 1927
- Quadrulini hering, 1901
  + Megalonaiadini Heard and Guckert, 1970
- Cyclonias Pitby in Ortman & Walker, 1922
- Megalonias Utterback, 1915
- Quadrula Rafinesque, 1820
- Tritonia Agassiz, 1852
- Unimia Conradi, 1853

**AMBLEMINAE (incertae sedis)**
+ Barymias Crosse & Fischer, 1894
+ Deliopninae Crosse & Fischer, 1894
+ Discionias Crosse & Fischer, 1894
+ Martinsniae Frierson, 1927
+ Micronia Simpson, 1900
+ Nephritica Frierson, 1927
+ Neponthinae Crosse & Fischer, 1894
- Pachyphylax Crosse & Fischer, 1894
- Poconia Crosse & Fischer, 1894
- Pseudula Haas, 1930
- Reticulatae Frierson, 1927
- Sphenonias Crosse & Fischer, 1894

**PAREYISINAE** Henderson 1935
- Pareaissyini Henderson, 1935
+ Diplasmatae Modell, 1942
+ Hemisoolasmae Starobogatov, 1970
- Pareyesia Conrad, 1853
- Coelaturini Modell, 1942
+ Brazzaeinae Leupol, 1950
+ Dentaspaimini Modell, 1964
into several subfamilies using umbo sculpture as the main diagnostic character (Table 1). However, this character alone was clearly unsuitable for this purpose and thus, these subfamilies were lumped back together until emergence of modern phylogenetic approaches (Davis and Fuller, 1981; Heard and Guckert, 1979; Ouyang et al., 2011; Pfeiffer and Graf, 2013, 2015; Zhou et al., 2016a) for unusual exceptions in some populations. Marsupial demibranchs lack specialized characters present in Anodontinae. Hinge teeth are well-defined. Glochidia are hooked, triangular and of medium size. Brooding type is tachytictic or short term (Table C1). The Unioninae are one of the most widely distributed tribes, covering almost all of Europe and Northwest Africa, as well as Vietnam, China, Far East Russia, Korea, Japan and the Sakhalin Island. In addition, two Unio species have disjunct distributions, i.e., Unio abyssinicus in the Horn of Africa and Unio caffer in South Africa (Fig. 4).

3.3.1. Tribe Unionini Rafinesque, 1820

Type Genus: Unio Philipsson in Retzius, 1788
Type Species: Mya pictorum Linnaeus, 1758

Comments: The Unionini contain only one genus, i.e., Unio. This genus is divided into four main lineages, i.e., the crassus-, pictorum-, gibbus- and tumidus-lineages (Froufe et al., 2016a; Lopes-Lima et al., 2016b), all of which are represented in the present phylogeny. Whilst the crassus- and pictorum-lineages cluster together, relationships among this group and the other two Unio lineages are not well resolved (Fig. 2).

Diagnosis: The main shared characters of the Unionini are: ectobranchous; marsupial demibranch without any specialized character; presence of a well-defined hinge structure with two pseudocardinal and two lateral teeth on the left valve and one or two on the right; umbo sculpture W-shaped and/or double-looped bars, which in some cases become nodulous or wrinkled; tachytictia or short term brooding; and the hooked triangular glochidia of intermediate sizes (Table C1).

Distribution: The tribe has essentially a western Palearctic distribution, extending from Western Europe to European Russia and the Caspian basin. In addition, three disjunct distributions are known, i.e., one in the Transbaikal region in Russia and two others in Sub-Saharan Africa (Fig. 4).

3.4. Rectidentinae Modell, 1942 phylogeny and tribal classification

The Rectidentinae originally included Rectidens as the type genus, as well as Physunio and Ensides also including some eastern North American and South Eastern Asian genera in this subfamily (e.g., Lastena, Pyganodon and Pilburyconcha) (Modell, 1942, 1964), but these were subsequently reasigned to distinct subfamilies (Haas, 1969a). The present phylogeny reveals two well supported clades within Rectidentinae, i.e., the tribes Contradentini Modell, 1942 and Rectidentini Modell, 1942. The Contradentini were first described as a subfamily in the same study that defined Rectidentinae (Modell, 1942). Although the Rectidentinae, Contradentinae and Nannonaiinae were all described by Modell (1942), priority of Rectidentinae was determined by the First Revisor action (Bieler et al., 2010; Brandt, 1974).

Since the two tribes within the Rectidentinae show a wide variability in morphological and anatomical characters, none of these characteristics are distinctive on the subfamily level (Table C1). The Rectidentinae are restricted to South East Asia, i.e., from Eastern India to Myanmar, Thailand, Laos, Cambodia and Vietnam, and to Peninsular Malaysia, and the Islands of Sumatra, Java, Borneo and Sulawesi (Fig. 5).

3.4.1. Tribe Contradentini Modell, 1942

Type Genus: Contradens Haas, 1911
Type Species: Contradens contradens (Lea, 1838)

Comments: The Contradentini initially included the type genus Contradens, as well as Caudiculatus, Pressidens and Simpsonella, all...
from Indochina and the Island of Borneo and the Philippines (Modell, 1942, 1964). Subsequently, all of these genera were reassigned to the Unioninae, with the exception of Simpsoonella, which was placed within the Anodontinae (Haas, 1969a,b). More recently, Caucilisulus and Pressidens were once again placed within the Rectidentini (Graf and Cummings, 2016). The present analyses recovered three genera in Contradentini, i.e., Contradens, Physunio and Trapezoides. The phylogenetic relationships of the other genera, i.e., Caucilisulus, Pressidens and Simpsoonella should be further investigated, since no sequence data are available at present. The date of publication of two genera, i.e., Uniandra Haas and Contradens, has been a source of confusion and has been clarified by Bogan (2015).

**Diagnosis:** Shell shape is variable, from rounded to elongate. Umbo sculpture ranges from v-shaped (e.g., in Contradens condens) to w-shaped/doublooped/nodulous (e.g., in Physunio supersbus) and pseudo-concentric ridges (e.g., in Trapezoides exolescens). Hinge plate is well defined, with one lateral and one or two thin pseudocardinal teeth in the left valve, and one lateral and one pseudocardinal teeth in the right valve. Glochidia are bilaterally asymmetrical and are quite distinct from any other group of the Unionidae, rendering this trait diagnostic of the tribe (Pfeiffer and Graf, 2015). Brooding type is ecborbanchous, but brooding period and length are unknown.

**Distribution:** The Contradentini have the same distribution in South East Asia as described above for the Rectidentinae (Fig. 5).

3.4.2. Tribe Rectidentini Modell, 1942

**Type Genus:** Rectiden Simpson, 1900

**Type Species:** Unio lingulatus Drouet and Chaper, 1892

**Comments:** The Rectidentini include the type genus Rectiden as well as Hyriopsis and Ensidsen. Of the four Hyriopsis species included in this study, only Hyriopsis cumingii does not cluster with the type of the genus Hyriopsis bialata. Thus, Hyriopsis cumingii is here reassigned to Sinohyriopsis StaroBobogatov, 1970, with the type species Unio cumingii Lea, 1852 (see Jng et al., 1980). The remaining Hyriopsis species relationships, i.e., Hyriopsis bialata, Hyriopsis desowitzi and Hyriopsis myersiana are still unresolved.

**Diagnosis:** Shells are usually elongated and, in Hyriopsis, often with evident dorsal wings. Umbo sculpture is predominantly pseudo-concentric to double-looped or nodulous. Hinge structure is generally well defined with a variety of teeth number and shapes. Glochidia are of the unhooked elliptical type and of intermediate sizes. Brooding type is ecborbanchous or tetragenous in Hyriopsis and tetragesens in Ensidsen and Rectiden (Table C1). The semi-elliptical unhooked shape of Rectidentini glochidia distinguishes this tribe from the Contradentini. However, semi-elliptical unhooked glochidia are also present in other subfamilies (i.e., Gonideinae and Ambleminae, Modellinae, and Parreysiniae).

**Distribution:** Although the distribution of the Rectidentini significantly overlaps with that of the Contradentini, its range excludes Bangladesh and the Islands of Sulawesi and Sumatra (Fig. 5).

3.5. Gonideinae Ortmann, 1916 phylogeny and tribal classification

The Gonideinae was first described including only a single monotypic genus, i.e., Gonidea angulata (Lea, 1838), which had previously been assigned to Anodontinae (Ortmann, 1896). That species reassignment was based on the distinctive anatomical characters of G. angulata, which are unique among the North American unionid fauna (Ortmann, 1916). Since then, the phylogenetic position of G. angulata has changed many times. It has been recognized as a valid subfamily (Heard and Guckert, 1970; Ortmann, 1916), placed within other subfamilies such as the Pseudodontinae (Modell, 1942) and the Unioninae (Haas, 1969a, 1969b), and in a separate tribe, i.e., Gonideini, within the Ambleminae (Graf, 2002; Graf and Cummings, 2007), but always as a monotypic group. Recent molecular phylogenetic analyses have recovered Gonide in a clade with several Old World genera (e.g., Potomida, Pseudodon and Pronodularia) and recognized that clade as the Goniodeinae (Pfeiffer and Graf, 2013, 2015).

In the present work, the Gonideinae are recovered as a monophyletic subfamily that includes the type genus Gonidea from western North America, three Western Pacific genera (i.e., Leguminia, Microcondyla and Potomida) and seven genera from East and Southeast Asia. The Gonideinae are here divided into two well supported clades. One includes two sister tribes, i.e., Chamberlainini nomen novum and Lamprotuilini (Fig. 2). The second clade is
composed of two tribes, i.e., the Gonideini and the Pseudodontini, and one isolated species, i.e., Solenaia triangularis (Fig. 2). No single morphological character is useful to diagnose the subfamily. All of the studied genera have medium sized semi-elliptical unhooked glochidia and are tachytictic, though the marsupium location varies among tribes (i.e., ectobranchous or tetrigenous; Table C1). The Gonideinae have a scattered distribution in the Northern Hemisphere, being present in restricted regions of the Palearctic, Indotropics and Western Nearctic (Fig. 6).

3.5.1. Tribe Chamberlainiini Bogan, Froufe and Lopes-Lima, nomen novum

Type Genus: Chamberlainia Simpson, 1900
Type Species: Unio hainesianus Lea, 1856

Comments: Chamberlainiini nomen novum is here described for the first time and encompasses only two genera, i.e., the monotypic Chamberlainia and Sinohyriopsis. The latter includes Sinohyriopsis cumingii, previously assigned to Hyriopsis (see above), and Sinohyriopsis schlegelii, previously shown to be related to S. cumingii (Froufe et al., 2016b).

Diagnosis: Shell oval, elliptical to rhomboid, often with small anterior wing and posterior dorsal wing. Posterior ridge is rounded. Umbos are low. Umbo sculpture consisting of well-developed pseudo-concentric or nodulous ridges. Hinge with single pseudocardinal and lateral tooth in the right valve, and typically two pseudocardinal and lateral teeth in left valve. Glochidia, as in all Gonideinae, are unhooked and semi-elliptical in shape. Brooding type is ectobranchous and tachytictic. The Chamberlainiini the only ectobranchous tribe within the Gonideinae (Table C1).
3.5.2. Tribe Lamprotulini Modell, 1942

**Type Genus:** Lamprotula Simpson, 1900  
**Type Species:** Chama plumbea Chemnitz, 1795

**Comments:** In addition to the type genus, the Lamprotulini include the western Palearctic Potomida and the Far East Asian Pronodularia. The Lamprotulini were first defined as a subfamily mainly based on characteristics of the umbo sculpture (Modell, 1942, 1964). It originally contained the genus Discomya, for which no genetic information is currently available, Lamprotula, Potomida and Pronodularia. Subsequently, all of these genera, with the exception of Pronodularia, were reassigned to Quadrulinae (Haas, 1969a, 1969b). However, Lamprotula, Pronodularia and Potomida were recently reassigned back to Gonideinae based on molecular, morphological and biogeographical studies (Pfeiffer and Graf, 2013, 2015; Whelan et al., 2011). The present study confirms the placement of these three genera within Lamprotulini.  

**Diagnosis:** Shells are generally thick, and ovate to triangular in shape. Hinge with well-developed, strong teeth, generally three pseudocardinals and four laterals. Umbo sculpture consists of W-shaped double-looped ridges, which sometimes become nodulous and/or wrinkled. Glochidia are semi-elliptical and unhooked, and of intermediate sizes (Table C1). Brooding type is tachytictic and tetragenous. Within the subfamily, the Gonideini are identified by a typical trapezoidal or rectangular shell shape, and a hinge without teeth or only vestigial teeth (Table C1).  

**Distribution:** The Lamprotulini have a disjunct distribution, with Potomida presenting a patchy distribution in the Mediterranean region, Lamprotula being distributed from North Vietnam to North China and Korea, and Pronodularia restricted to Korea and Japan (Fig. 6).

3.5.3. Tribe Gonideini Ortmann, 1916

**Type Genus:** Gonidea Conrad, 1857  
**Type Species:** Anodon randalli Trask, 1855 (junior synonym of Anodonta angulata Lea, 1838)

**Diagnosis:** Shell shape is trapezoidal but much more elongated in Solenaia. Hinge teeth are small, vestigial or absent in Solenaia. Umbo sculpture consists of pseudo-concentric, double-looped and/or W-shaped ridges, which are sometimes wrinkled. Glochidia are of intermediate sizes, semi elliptical and unhooked. Brooding type is tachytictic and tetragenous. Within the subfamily, the Gonideini are identified by a typical trapezoidal or rectangular shell shape, and a hinge without teeth or only vestigial teeth (Table C1).  

**Distribution:** The tribe has a curious, disjunct distribution. While Gonidea is restricted to the west coast of North America, Microcondylaea only occurs from the Italian Peninsula to coastal Croatia in Europe, and Leguminia is present in southeast Turkey and the Middle East. Solenaia occurs from eastern India to Myanmar, Thailand, North Vietnam and China (Fig. 6).

3.5.4. Tribe Pseudodontini Frierson, 1927

**Type Genus:** Pseudodon Gould, 1844  
**Type Species:** Anodon inoscularis Gould, 1844

**Comments:** This group was first named as a subfamily, Pseudodontinae, by Frierson (1927) and included the species Pseudodon cambodjensis and Gonidea angulata. It was then redefined, mainly using morphological characters, with Pseudodon as the type genus together with other genera including the North American Gonidea (Modell, 1942, 1964). All of these genera were then subsequently reassigned to the Unioninae subfamily (Haas, 1969a, b; Subba

---

**Fig. 6.** Distribution map of the subfamily Gonideinae.
Rao, 1989), and only recently were their relationships with the Gonideinae discussed (Pfeiffer and Graf, 2015; Whelan et al., 2011). The Pseudodontinae is here demoted to a tribe, Pseudodontini, within Gonideinae, being composed of only two monophyletic genera, i.e., the type genus *Pseudodon* and *Pilsbryoconcha* (Fig. 2).

**Diagnosis:** Shell shape is generally ovate in *Pseudodon* and more elongated in *Pilsbryoconcha*. Umbo sculpture is basically double-looped or W-shaped, with the anterior loops sometimes fading distally, so that only the posterior single-loop or a single row of nodes remains. Brooding type is tachytotic and tetragenous. Glochidia are unhooked and semi-elliptical. The representatives of this tribe present a characteristic "v" shaped fossette present at the posterior end of the hinge structure with small vestigial teeth, which are completely absent in *Pilsbryoconcha* (Table C1).

**Distribution:** The Pseudodontini are present in Myanmar, Malaysia, Thailand, Cambodia, Laos, Vietnam, China and Indonesia including the Islands of Java, Sumatra and Borneo (Fig. 6).

3.6. Ambleminae Rafinesque, 1820, Parreysiinae Henderson, 1935 and Modellnaiinae Brandt, 1974

The Ambleminae and Parreysiinae were investigated in detail earlier (Campbell and Lydeard, 2012a,b; Campbell et al., 2005; Whelan et al., 2011) and thus not fully explored in the present study. The Modellnaiinae is a monotypic subfamily defined by Brandt (1974) with *Modellnaia siamensis* as the only species. Its status as a subfamily has been retained by posterior classification systems based on its quite distinct morphological characters (Bieler et al., 2010; Carter et al., 2011; Whelan et al., 2011; this study). Unfortunately, this species has never been included in a phylogenetic analysis and no sample was available for the present study.

Based on these earlier works and the present classification system, distribution maps are here presented for Ambleminae, Parreysiinae and Modellnaiinae (Table 3; Fig. 7). The Ambleminae are restricted to Canada and the United States east of the Rocky Mountains and extend south through Mexico to southern Panama. The Parreysiinae have a disjunct distribution in Africa and Southern Asia. In Africa, the Parreysiinae are found in the Nile River basin from the Nile delta south into East Africa and across sub-Saharan Africa south to Namibia and Mozambique. *Germainia* Graf and Cummings, 2009 from northwest Madagascar is treated here as belonging to the Parreysiinae. In Asia, the Parreysiinae occur in Pakistan, India, Nepal, Myanmar, Thailand, Indonesia, Cambodia, Laos and Vietnam (Fig. 7). The Modellnaiinae (i.e., *Modellnaia siamensis*) is restricted to the middle section of Mun River in Thailand (Fig. 7).

4. Conclusions

Considering the high levels of decline of freshwater mussel species worldwide, an understanding of the phylogenetic diversity is crucial for determining conservation priorities, especially in poorly explored regions such as the Central American and the Indotropics. In fact, conservation strategies should strive not only to maximize the current levels of biological diversity, but also to include phylogenetic patterns to maximize future levels of biodiversity. Furthermore, due to the increasing development and biotic homogenization in tropical areas (e.g., Malaysia and Indonesia) with dramatic negative implications on freshwater habitats, conservation and management efforts targeting freshwater taxa are urgently needed.

The present study is an important contribution to the definition of freshwater mussel diversity patterns, especially in the Indotropical and East Asian countries. Here, a phylogeny of the Unionidae is presented with the greatest generic and geographic coverage to date, based on a dataset comprising 70 species in 46 genera, 7 of this genera being sequenced for the first time. Furthermore, it includes 57 species from 35 genera, thereby tripling the number of analyzed taxa from Anodontinae, Unioninae, Rectidentinae and Gonideinae. Molecular phylogenetic analyses revealed the presence of 6 subfamilies in the Unionidae, divided into 18 tribes, 3 of which are described here for the first time. Although we compiled seven characters traditionally used in Unionidae systematics, no single one was found to be diagnostic at the subfamily level and few were useful at the tribe level (e.g., larval morphology for Contradentini). However, within subfamilies, many tribes can be characterized based on a subset of these characters.

Representing a major international collaborative effort, this study provides important advances in the systematics of these extraordinary taxa with implications for ecological and conservation studies (e.g., assessment of conservation status and distribution).
Acknowledgments

Financial support was provided by: the Portuguese Foundation for Science and Technology (FCT) Grant to EF (SFRH/BDP/108445/2015); the Vietnam Academy of Science and Technology under grant number IEBR.BTS07/2015 for the Vietnamese field research; the Central Michigan University Poyang Lake Research Investment Fund and the Key Laboratory of Poyang Lake Wetland and Watershed Research Director’s Open Fund of Jiangxi Normal University for procurement of and analysis of some Chinese specimens. The authors wish to thank: Jamie Smith, Collection manager of Mollusks, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, for all of her efforts to ship tissue samples to be used in this project; the Confederated Tribes of the Umatilla Indian Reservation for providing access to specimens of A. nuttlaniana.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2016.08.021.

References


