6th International Congress on Medicinal and Aromatic Plants

CIPAM 2016

29 May - 1 June
Vila Galé Hotel
Coimbra | Portugal

Book of Abstracts
The content of the Abstracts is the authors responsibility.
P94. Phenolic compounds and antioxidant capacity of three *Thymus* species

Afonso A\(^1\); Pereira OP\(^2\); Cardoso SM\(^3\)

\(^1\)Public Health Laboratory of Bragança, Local Health Unit, Bragança, Portugal; \(^2\)Department of Diagnostic and Therapeutic Technologies, School of Health Sciences, Polytechnic Institute of Bragança, Bragança, Portugal; \(^3\)Department of Chemistry, University of Aveiro, Aveiro, Portugal

susanacardoso@ua.pt

Keywords: Thymus, Lamiaceae, phenolic compounds, antioxidant activity

*Thymus* plants comprise distinct species with claimed health properties [1], commonly associated to their essential oils and phenolic compounds. Albeit that, the phenolic composition and the biological activities of many *Thymus* species remain unclear. This work aimed to elucidate the phenolic composition and antioxidant properties of aqueous extracts from aerial parts of *Thymus herba barona*, *Thymus caespititius* and *Thymus fragrantissimus*.

The aqueous extracts of the three *Thymus* species were evaluated for their total phenolic compounds by an adaptation of the Folin-Ciocalteu method [2], and individual phenolic compounds were identified by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative mode. The antioxidant activity of each extract was carried out by DPPH• scavenging assay and ferric reducing antioxidant power assays [3].

Total phenolic compounds in the three extracts ranged from 236±27 (T. caespititius) to 273±17 µg GAE/mg (T. fragrantissimus). Similarly to other *Thymus* species [1,4], these extracts were rich in caffeic acid derivatives (characteristic UV spectra maxima at 290 and 328 nm) and mainly composed of rosmarinic acid (MW 360). Other caffeic acid derivatives included salvianolic acid K (MW 556) and 3′-O-(8″-Z-caffeoyl)rosmarinic acid (MW 538). High amounts of the flavone luteolin-O-glucuronide ([M-H]− at m/z 461→285) were found in *T. caespititius* while the others species contained moderate amounts of this compound.

*T. herba barona*, *T. caespititius* and *T. fragrantissimus* extracts showed high DPPH radical scavenge ability (EC50 values 11.6±0.9, 13.8±0.6 and 10.9±1.2 µg/mL respectively), as well as high reducing power (EC50 values of 35.1±4.5, 39.3±2.7 and 32.4±4.3 µg/mL, respectively), that were comparable to those of reference compounds.

This work is an important contribution for the phytochemical characterization and the antioxidant capacity of these three *Thymus* species.

Acknowledgements: Financial support of FCT and QREN, FEDER, and COMPETE to QOPNA research unit (project PEst-C/QUI/UI0062/2013; FCOMP-01-0124-FEDER-037296).