5th Portuguese Young Chemists Meeting
(5th PYCheM)
&
1st European Young Chemists Meeting
(1st EYCheM)

Centro Cultural Vila Flor
Guimarães, Portugal
26th – 29th of April
COMMITTEES

ORGANIZING COMMITTEE
Catarina Custódio (3B’s Research Group)
Luisa Rodrigues (3B’s Research Group)
João Borges (3B’s Research Group)
Ana Rita Araújo (3B’s Research Group)
Sara Amorim (3B’s Research Group)
Ivo Aroso (3B’s Research Group)
Raquel Teixeira (3B’s Research Group)
Ramon Novoa-Carballal (3B’s Research Group)
Ana Soares (Chemistry Department of University of Minho)
Cristina Sousa (Chemistry Department of University of Minho)
Tiago Silva (3B’s Research Group)
Lara Reys (3B’s Research Group)
Sandra Silva (3B’s Research Group)
Leonardo Mendes (SPQ)

SCIENTIFIC COMMITTEE
João F. Mano (Univ. do Minho, Portugal)
Iva Pashkuleva (Univ. do Minho, Portugal)
Fernanda Proença (Univ. do Minho, Portugal)
Artur Silva (Univ. de Aveiro, Portugal)
António Fernando Silva (Univ. do Porto, Portugal)
Maria João Moreno (Univ. de Coimbra, Portugal)
Verónica Bermudez (Univ. de Trás os Montes e Alto Douro, Portugal)
Matilde Marques (Inst.Superior Técnico, Portugal)
Isabel Ferreira (Inst.Politécnico de Bragança, Portugal)
Armando Silvestre (Univ. de Aveiro, Portugal)
José Esperança (ITQB, Portugal)
António Varandas (Univ. de Coimbra, Portugal)
Fátima Bento (Univ. do Minho, Portugal)
Aranzazu del Campo (MPIP Mainz, Germany)
Radim Hrdina (Univ. of Pardubice, Czech Republic)
Edward Matthijs (KU Leuven, Belgium)

SPQ SECRETARIAT
Leonardo Mendes
Cristina Campos
General Programme

<table>
<thead>
<tr>
<th>26 April</th>
<th>27 April</th>
<th>28 April</th>
<th>29 April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration and Workshop of</td>
<td>Organic Chemistry and Medicinal Chemistry</td>
<td>Inorganic, Physical, Analytical and Electrochemistry</td>
<td>Materials Chemistry and Nanomaterials and Surface Chemistry</td>
</tr>
<tr>
<td>9:00-13:20</td>
<td>Open Science and European Open Access Policies in H2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30 Opening Ceremony</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Green Chemistry + Chemistry of Natural Products</td>
<td>Biochemistry and Medicinal Chemistry</td>
<td>Materials Chemistry and Nanomaterials and Surface Chemistry</td>
</tr>
<tr>
<td></td>
<td>CHEM2NATURE Symposium: Chemical strategies for modification of natural origin materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assembleia GQJ (17h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Walking Tour</td>
<td>Closing Ceremony</td>
<td>Gala Dinner</td>
</tr>
<tr>
<td>19:00</td>
<td>Welcome Cocktail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:30</td>
<td>Get-together night</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5th PYCheM & 1st EYCheM – 2016 Guimarães, Portugal
P4. Antiangiogenic potential of yoghurts added with extracts rich in apigenin derivatives

Andreia Ribeiro1,2, Franciely Oliveira1,2, Ricardo C. Calhelha1, Bogdan D. Junior3, Maria Filomena Barreiro2, Isabel C.F.R. Ferreira1

Corresponding Author: barreiro@ipb.pt; iferreira@ipb.pt

1 Mountain Research Centre (CIMO), IPB, Bragança, Portugal, 2 Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Bragança, Portugal and 3 University Federal Technological of Paraná (UTFPR), Paraná, Brasil

Angiogenesis is a biological process through which there is the formation of new blood vessels from pre-existing ones [1]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2] through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention.

In this work, an Arenaria montana L. hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process.

The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

References

Acknowledgments

FCT for financial support to CIMO (Project PEst-OE/AGR/UI0690/2014). FCT/MEC and FEDER under Program PT2020 for financial support to LSRE (Project UID/EQU/50020/2013). QREN, ON2 and FEDER (NORTE-07-0124-FEDER-000014) and PRODER (Project nº 46577- PlantLact). The authors also thank Ana Maria Carvalho for providing Arenaria montana L. samples.