Preface

This book contains the abstracts and full papers presented at the IEEE 4th Portuguese Meeting on Bioengineering (ENBENG) organized by the IEEE Engineering in Medicine & Biology Society (EMBS) Chapter of the IEEE Portugal Section that was held in “Atmosfera m”, in the city of Porto, between 26th and 28th, February of 2015.

The Portuguese Meeting on Bioengineering is one of most important meetings organized in Portugal related with the Bioengineering field and where students and researchers present and discuss the preeminent work developed in Portugal in the field. The meeting has been organized since 2011: the first was held in Lisbon, in 2011; the second in Coimbra, in 2012; and the third occurred in Braga, in 2013.

ENBENG2015 had 107 works submitted, from which 52 were accepted for oral presentations distributed by 10 sessions, and 31 as posters. The submissions involved authors from several Portuguese Institutions, which shows the importance of the Bioengineering and Biomedical Engineering in Portugal nowadays. Additionally, 9 submissions were from foreign countries. The received contributions address several topics related to Bioengineering, including Biomaterials, Nanobiotechnology, Tissue Engineering, Biology of Stem Cells and Regenerative Medicine, Bioprocess Engineering, Bioinformatics Engineering and Biomolecular Engineering, Biomechanics and Computational Biology, Biomedical Signal Processing, Radiology and Biomedical Imaging, Image Processing, Bioinstrumentation, Biosensors and Neuroengineering, Medical Robotics and Human-Machine Interface, Clinical Informatics, Modeling of Physiological Systems, Domicile Autonomy Assistance and Education in Bioengineering, which emphasis the multidisciplinarity of the field.

We would like to thank to all the Sponsors, members of the Scientific Committee, Invited Lecturers and Authors for sharing their work and Participants for contributing to the effective discussion forum established during the meeting. Finally, we acknowledge the Portuguese Chapter of the IEEE Engineering in Medicine & Biology Society (EMBS) for the privilege that was the organization this edition of The IEEE Portuguese Meeting on Bioengineering and for the support offered.

Porto, February 26th, 2015

The Organizing Committee:
Renato M. Natal Jorge
Jorge Belinha
Pedro A. L. S. Martins
Marco P. L. Parente
Adelino Leite-Moreira
João Manuel R. S. Tavares
(Universidade do Porto & INEGI)
The IEEE Engineering in Medicine & Biology Society (EMBS) is the world's largest international society of biomedical engineers. It is committed to the application of engineering sciences and technology for the advance of medicine and biology, to the promotion of the Engineering professions that aim to improve health and enhance quality of life and the development of their professionals, as well as to promote multidisciplinary scientific and technical events for dissemination of knowledge.

In Portugal it is represented by its Portugal Section Chapter, which congregates Portuguese IEEE-EMBS members and has the goal of promoting synergies between the engineering and the life sciences for their development, through the generation of knowledge and its application in an integrated and multidisciplinary way.

In the last ten years there has been a huge increase of the academic offer in the areas of Biomedical Engineering, Biological Engineering and Bioengineering. Presently, Portugal has more than one thousand graduates in these areas and there are also hundreds of students currently attending the corresponding undergraduate and graduate programs.

It is our belief that the objectives of the IEEE-EMBS stated above correspond to the needs and aspirations of the growing community of Portuguese professionals in the areas of Biomedical Engineering, Biological Engineering and Bioengineering. We believe that the IEEE-EMBS Portuguese Chapter is the organization with better conditions to promote these professionals and carry out the dissemination of knowledge in these areas.

The IEEE Portuguese Meeting on Bioengineering (ENBENG), now in its 4th edition, is fundamental to fulfill IEEE-EMBS goals in Portugal. This event brings together people and entities from the academic, business and clinical areas, connected to the disciplines of Biomedical Engineering and Bioengineering, and it is a forum for the dissemination and promotion of their activities and for establishing synergies and opportunities for development and cooperation. It addresses a wide range of topics related to Bioengineering, reflecting the multidisciplinarity of the field, and focus on the participation of graduate students and young researchers providing them the opportunity to present their works.

In our opinion, the IEEE Portuguese Meeting on Bioengineering (ENBENG) is the ideal event to congregate the Portuguese community of Biomedical Engineering, Biological Engineering and Bioengineering. The IEEE-EMBS Portuguese Chapter is committed to the annual realization of this meeting and will spare no efforts to make it the leading occasion for bringing together the professionals and students from this growing community.

Miguel Morgado
Chair, IEEE-EMBS Portuguese Chapter
Procedings of the 2015 IEEE 4th Portuguese Meeting on Bioengineering, Porto, Portugal, 26-28 February 2015

Table of Contents

Preface iii
Introduction of the Chair of IEEE-EMBS Portuguese Chapter v
Conference Program xiii

Abstracts

ACTIVE PEDAL EXERCISER FOR LEG REHABILITATION 3
Garcia, Filipa; Ferreira, João P.; Ferreira, Paulo; Cruz, Stephane; Crisóstomo, Manuel; Coimbra, A. Paulo

OPTIMIZING THE APPROXV1 ALGORITHM FOR COPING WITH DIFFRACTION EFFECTS IN PROTEIN-BASED VOLUMETRIC MEMORIES 5
Trincă, Dragoş; Rajasekaran, Sanguthevar

AMINO ACID DERIVATIZED MONOLITHS FOR PURIFICATION OF A DNA VACCINE AGAINST INFLUENZA. 7

MODELING PARTITIONING OF PROTEINS IN AQUEOUS TWO-PHASE SYSTEM 9
P.C. de Barros, Dragana; R.R. Campos, Sara; Azevedo, A.M; Baptist, A.M.; Aires-Barros, M.R.

SOFTWARE FOR HUMAN GAIT ANALYSIS AND CLASSIFICATION 11
Vieira, Alexandra; Sobral, Hélisa; Ferreira, João P.; Ferreira, Paulo; Cruz, Stephane; Crisóstomo, Manuel; Coimbra, A. Paulo

MEDICAL THERMAL IMAGING PROCEDURE FOR HAVS ASSESSMENT 13
Vardasca, Ricardo; Gabriel, Joaquim

HUMAN GAIT ANALYSIS USING INSTRUMENTED SHOES 15
Sobral, Hélisa; Vieira, Alexandra; Ferreira, João P.; Ferreira, Paulo; Cruz, Stephane; Crisóstomo, Manuel; Coimbra, A. Paulo

PREPARATION AND CHARACTERIZATION OF AMYLose-PyRAZINAMiDE iNClUSiON COMPLEXES 17
C. Ribeiro, Andresa; P. Fonseca, Luis; M. D. Soares, Rosane; P. da Silveira, Nádia; L. Peres, Giselle

RELATIONSHIP BETWEEN AREA AND MOMENT OF INERTIA WITH PUBOVISCERAL MUSCLE DISPLACEMENT BY BIOMECHANICAL MODELS 19
Da Roza, Thuane; Brandão, Sofia; Mascarenhas, Teresa; Ramos, Isabel; Duarte, José Alberto; Nátal Jorge, Renato

A nucleoid segmentation method robust to varying nucleoid number 21
Santinha, João; Gonçalves, Nádia; Mora, André D.; Ribeiro, André S.; Fonseca, José
OPTIMIZATION OF MINIEMULSION PROCESS USING DIFFERENT SOLVENTS
C.D. Pfluck, Ana; P.C. de Barros, Dragana; A. Lopes, Clara; P. Fonseca, Luis

ELECTROSPUN MATS OF BIODEGRADABLE CHITOSAN-BASED POLYURETHANE UREA
Vieira, Tânia; Borges, João Paulo; Henriques, Célia

Anaesthesia induction in small mammal’s using an instrumented anaesthetic chamber
Correia, Rui; Pereira, Ana; Gabriel, Joaquim; Antunes, Luis

Biomechanical simulation of the human ear
Areias, B; Parente, M.P.L.; Gentil, F; Natal Jorge, R.M.; Fernandes, A.A.

DEVELOPMENT OF A UNIVERSAL SURGICAL GUIDE TO PERFORM LOW INVASIVE KNEE SURGERIES

A web-based framework using a Model-View-Controller architecture for Human motion analysis
Joana Rosa; Hugo Silva; Ricardo Matias

MECHANICAL RESONANCE IN HUMAN CHROMOSOMES
Branco, Tiago; Patrício, Miguel; Caramelo, Francisco; Botelho, Maria Filomena

HAND THERAPIST: A REHABILITATION APPROACH BASED ON WEARABLE TECHNOLOGY AND VIDEO GAMING
Rastislav Lipovský; Hugo Alexandre Ferreira

A LIGHT-GUIDE OPTIMIZATION FOR PROOF-OF-PRINCIPLE OF A MEGAVOLTAGE ORTHOGONAL RAY IMAGING PROTOTYPE
Hugo Simões; Paulo Crespo

GAMMA DISTRIBUTION MODEL IN BREAST CANCER DIFFUSION-WEIGHTED IMAGING
Filipa Borlinhas; Luísa Nogueira; Sofia Brandão; Rita G. Nunes; Joana Loureiro; Isabel Ramos; Hugo A. Ferreira

HUMAN BRAIN TRACTOGRAPHY: A DTI vs DKI COMPARISON ANALYSIS
Ricardo Louçãio; Rita G. Nunes; Rafael Neto-Henriques; Marta Correia; Hugo Ferreira

POPULATION-BASED DOSIMETRY IN NUCLEAR MEDICINE AND PET: DEVELOPMENT OF PORTUGUESE FEMALE AND MALE ANTHROPOMORPHIC MODELS
Ana Teresa Nunes; Miguel Patricio; Francisco Alves

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES BASED ON COMPUTATIONAL IMAGE REGISTRATION
Raquel S. Alves; Diogo Borges Faria; Durval Campos Costa; João Manuel R. S. Tavares

UPGRADING WHEAT STRAW TO HOMO AND CO-POLYHYDROXYALKANOATES
M. Teresa Cesário; Rodrigo Raposo; M. Catarina M. D de Almeida; Bruno S. Ferreira; Frederik van Keulen; M. Manuela R. da Fonseca

EFFECT OF TRANSIENT MAGNETIC STIMULATION ON ZINC SIGNALS ASSOCIATED WITH SYNAPTIC PLASTICITY IN HIPPOCAMPAL CA3 AREA
Antónia Maura A. Ferreira , Fátima C. Bastos , Nuno Saraiva Santos , Sónia C.P. Sousa , Paulo Crespo , Paulo J.B. Mendes , M. Emília Quinta-Ferreira

MAXWELL’S EQUATIONS BASED 3D MODEL OF LIGHT SCATTERING IN THE RETINA
Miriam Santos , Adérito Araújo , Sílvia Barbeiro , Francisco Caramelo , António Correia , Maria Isabel Marques , Miguel Morgado , Luís Pinto , Pedro Serranho , Rui Bernardes

SHIELDING THE MAGNETIC FIELD FROM A TRANSCRANIAL STIMULATOR USING ALUMINIUM AND IRON: SIMULATION AND EXPERIMENTAL RESULTS
Nuno Saraiva Santos , Sónia C.P. Sousa , Paulo Crespo , Pedro Cavaleiro Miranda , Ricardo Salvador , João Silvestre
ZINC CHANGES EVOKE BY PHENOLIC COMPOUNDS AND EFFECT ON TEA-LTP AT HIPPOCAMPAL MOSSY FIBER SYNAPSES 57
Fátima C. Bastos, Sandra A. Lopes, Vanessa N. Corceiro, Carlos M. Matias, Paulo J.B. Mendes, Fernando D.S. Sampaio dos Aidos, José C. Dionísio, Rosa M. Quinta-Ferreira, M. Emília Quinta-Ferreira

Metabolic Care: development and characterization of a new thermographic platform for diabetic foot detection 59
Helena Catarina Pereira, Pedro do Mar, Carlos Correia

DEVELOPMENT OF A HIGH-THROUGHPUT MONITORING TECHNIQUE OF BACTERIA PHOTODYNAMIC INACTIVATION 61
Bernardo Cunha, Pedro N. Sampaio, Cecília R.C. Calado

AN ULTRA-HIGH RESOLUTION PRECLINICAL POSITRON EMISSION TOMOGRAPHY SCANNER 63
P Martins, A Blanco, P Crespo, MFF Marques, RF Marques, PM Gordo, M Kajetanowicz, G Korcyl, L Lopes, J Michel, M Palka, M Traxler, AJ Abrunhosa, M Couceiro, P Fonte

SCREENING OF L-HISTIDINE BASED LIGANDS TO PURIFY THE SUPERCOILED PLASMID DNA ISOFORM 65
Lucía Amorim, Fani Sousa, João Queiroz, Carla Cruz, Ângela Sousa

OPTIMIZATION OF INVESTMENT CASTING OF Ti6Al4V HIP PROSTHESES BY NUMERICAL AND EXPERIMENTAL METHODS 67
Nannan Song, Shenghua Wu, Rui Neto, Margarida Machado

ON PRODUCING CUSTOMISED SOFT-TISSUE PROSTHESES USING DIGITAL TOOLS AND SILICONE CASTING TECHNIQUES 69
Mafalda Couto, Margarida Machado, Rui Neto

Papers

In silico comparison of 11 different radioisotopes for palliative treatment of bone metastases 73
Guerra Liberal, Francisco; Tavares, Adriana; Manuel R. S. Tavares, João

Interaction studies of amyloid beta-peptide with the natural compound resveratrol 79
Stephanie Andrade, Joana A. Loureiro, Manuel A. N. Coelho, Maria do Carmo Pereira

Analysis of stresses in drilled composite materials 83
M.G. Fernandes; R.M. Natal Jorge; E.M.M. Fonseca

EXTRACTION OF ZERA® FUSION PROTEINS IN AQUEOUS TWO-PHASE SYSTEMS 87
Jacinto, Maria João; Archinti, Marco; Marzábal, Pau; Azevedo, Ana M.; Aires-Barros, M. Raquel

Mechanical Tests in All Regions of the PIP Breast Implants 93
Ramião, Nilza; Martins, Pedro; Fernandes, A. Augusto; Barroso, Maria; Santos, Diana

Assistance and Rehabilitation of Gait Disorders using Active Lower Limb Orthoses 97
Figueiredo, Joana; Santos, Cristina P.; Moreno, Juan C.

Urinary Incontinence In Musicians: A Preliminary Study 103
Masteling, Mariana; Mascarenhas, Teresa; Natal, Renato

Analysis of Multiple Sclerosis DTI Images that Uses Tract Based Spatial Statistics 107
Oliveira, João; Morais, Ricardo; Baptista, Sónia; Pereira, João; Castelo-Branco, Miguel

A new Method for Predicting Epilepsy Seizure 111
Abdellatif Abuinmara

Implementation of a multivibrational medical device to assist the removal of teeth and roots 115
Setas, Sara; Seabra, Eurico; Silva, Luis F.; Puga, Helder; Pombo, Cátia; Mendes, Joaquim Gabriel
RANDOM DECISION FORESTS FOR AUTOMATIC BRAIN TUMOR SEGMENTATION ON MULTI-MODAL MRI IMAGES
Adriano Pinto, Sérgio Pereira, Hugo Dinis and Carlos A. Silva; Deolinda M. L. D. Rasteiro

119

A Serious Game for Rehabilitation of Neurological Disabilities: Preliminary Study
Tiago Martins; Vítor Carvalho; Filomena Soares

125

Characterization of silicon photodiodes for diffuse reflectance signal extraction
S. Pimenta; J. P. Carmono; R. G. Correia; G. Minas; E. M. S. Castanhaira

131

Wireless Multi-Physiological Signal Monitor for Clinical Discharge and Readmissions Criteria
Setting and Ambulatory Usage
Tiago Marçal; Bruno Antunes; Requicha Ferreira; Carlos Correia; Diana Pires; Ana Matos; João Nuno Simões

135

Evaluation of Material Model Parameters of Vaginal Tissue with Different Fiber Orientation
Rita Martins; Pedro Martins; Teresa Mascarenhas; Renato Natal Jorge

141

Effect of Surgical Mesh Implant in the Uterine Prolapse Correction
Paulo Rocha; Marco Parente; Teresa Mascarenhas; António Fernandes; Renato Natal Jorge

147

PROTOTYPE FOR DETERMINATION OF PRE-TRANSFUSION TESTS BASED ON IMAGE PROCESSING TECHNIQUES
Ferraz, Ana; Machado, José; Carvalho, Vítor

151

Patterned CNT-PDMS nanocomposites for flexible pressure sensors
P.J. Sousa; L.R. Silva; L. M. Goncalves; G. Minas

157

MECHATRONIC SYSTEM FOR ASSISTANCE ON BATH OF BEDRIDDEN ELDERLY PEOPLE
Karolina Bezerra; José M. Machado; Bruno Silva; Vítor Carvalho; Filomena Soares; Demétrio Matos

161

PDMS biofunctionalization study for the development of a microfluidic device: application to salivary cortisol
V.C. Pinto; G. Minas; M. Correia-Neves

165

Optimization of Sitting Posture Classification Based on User Identification
Bruno Ribeiro, Leonardo Martins, Hugo Pereira, Rui Almeida, Cláudia Quaresma, Adelaide Ferreira, Pedro Vieira

171

‘miSimBa’ – A Simulator of Synthetic Time-Lapsed Microscopy Images of Bacterial Cells
Leonardo Martins; Andre Ribeiro; José Fonseca

177

Long Neuroprobes Based on Silicon Dicing and Iridium Oxide for Electrical Stimulation/Recording

183

Modeling and elastic simulation of auxetic magnesium stents
V.H. Carneiro; H. Puga

187

Diffusion Kurtosis Imaging: Monte Carlo simulation of diffusion Processes using Crowdprocess
David Naves Sousa; Hugo Alexandre Ferreira

191

Application of a Modified Hilbert-Huang Transform To Autonomic Evaluation In Metabolic Syndrome
Nataniel Goncalves-Rosa, Cristiano Tavares, Vera Geraldes, Catarina Nunes-da-Silva, Isabel Rocha

195

Towards an RFID Microsystem for Surgical Instrument Detection Using Millimeter Waves
Manuel Zamith; Paulo Mendes

201

WAVELET ANALYSIS OF HRV DURING MICROGRAVITY SIMULATION
Rui Garcês; Mafalda Carvalho; Cristiano Tavares; Thais Russomano; Isabel Rocha

205

Performance Assessment Of Wireless Power Transfer Links For Implantable Microsystems
Hugo Dinis, Paulo Mendes

209
Using An Inverse Method for Optimizing the Material Constants of The Mooney-Rivlin Constitutive Model
Elisabete Silva; Marco Parente; Renato Natal Jorge; Teresa Mascarenhas

Reliability of a wearable system to evaluate ambulatory autonomic activity
Cristiano Tavares; Vera Geraldes; Stephane Bastier; Anne Pavy-Le-Traon; Isabel Rocha

Correlation Study Between Blood Pressure And Pulse Transit Time
Tânia Pereira; Rui Sanches; Pedro Reis; José Pêgo; Ricardo Simões

A structural damage model for pelvic floor muscles
Dulce Oliveira; Marco Parente; Begoña Calvo; Teresa Mascarenhas; Renato Natal Jorge

A DISCONTINUOUS GALERKIN SCHEME FOR SOLVING 2D WAVE PROPAGATIONS IN ANISOTROPIC MATERIALS
Aderito Araujo, Silvia Barbeiro, Maryam Khaksar Ghalati

Image-Derived Input Function for Brain PET Quantification
André Gorgulho, Miguel Patricio

Comparison between the dynamic and initial creep response of porcine and human lumbar intervertebral discs
A.R.G Araújo, N. Peixinho, A.C.M. Pinho, J.C.P. Claro

Maxwell's Equations based 3D model of Light Scattering in the Retina
Miriam Santos, Adérito Araújo, Silvia Barbeiro, Francisco Caramelo, António Correia, Maria Isabel Marques, Miguel Morgado, Luís Pinto, Pedro Serranho, Rui Bernardes

Development of a Tool for Automatic Classification of Intratumoral Heterogeneity of Lung Cancers Based on PET/CT Intensity Values
Carlos Pereira, Célia Gomes, Francisco Caramelo

PDMS encasing system for integrated lab-on-chip Ag/AgCl reference electrodes
T.S. Monteiro, L.M. Gonçalves, G. Minas, S.C. Freitas

THE NUMERICAL ANALYSIS OF A RESTORED TOOTH USING MESHLESS METHODS
Cristina Tavares, Jorge Belinha, Lúcia Dinis, Renato Natal Jorge

Zinc changes evoked by phenolic compounds and effect on TEA-LTP at hippocampal mossy fiber synapses
Fátima C. Bastos, Sandra A. Lopes, Vanessa N. Corceiro, Carlos M. Matias, Paulo J.B. Mendes, Fernando D.S. Sampaio dos Aidos, José C. Dionísio, Rosa M. Quinta-Ferreira, M. Emília Quinta-Ferreira

Diffusional Kurtosis Imaging using a fast Heuristic Constrained Linear Least Squares Algorithm: a plugin for OsiriX
Nuno Mesquita, João Santinha, José Fonseca

An elasto-plastic model to analyse the biomechanical behaviour of the atherosclerotic plaque tissue
Jorge Belinha, Lúcia Dinis, Renato Natal Jorge

Comparative analysis of near and mid-infrared spectroscopy to monitor recombinant cyprosin production
Pedro N. Sampaio, Cecilia R.C. Calado

Molecular fingerprint of human gastric cell line infected by Helicobacter pylori
Filipa Rosa, Kevin Sales, Pedro Sampaio, Marta Lopes, Cecilia R.C. Calado

Fluorescence Lifetime Microscope for Corneal Metabolic Imaging
Susana F. Silva, Ana Batista, José Paulo Domingues, Maria João Quadrado, Miguel Morgado

Numerical Simulation of the Maneuvers performed in Vestibular Rehabilitation
Carla F. Santos, Fernanda Gentil, Marco Parente, Jorge Belinha, Renato Natal Jorge
3D Gait Analysis In Rheumatoid Arthritis Postmenopausal Women With And Without Falls History
Pedro Aleixo, João M.C.S. Abrantes

Footedness influence on Stability measures
Tiago Atalaia, João M.C.S. Abrantes

The osteointegration numerical prediction of a femur stem using a meshless approach
Jorge Belinha, Lúcia Dinis, Renato Natal Jorge

Contributed theses

3D liver segmentation in Computed Tomography and Positron Emission Tomography exams through Active Surfaces
Mendes, Diana; Ferreira, Nuno; Silva, Jose; Caramelo, Francisco

Optimization of a Multibody System of the Human Lombar Spine
Sofia Sousa; J.C.P Claro

Robotic Locomotion combining Central Pattern Generators and Reflexes
César Ferreira; Cristina P. Santos

Computer-Aided Bone Fracture identification based on ultrasound images
Luis Nascimento; M. Graça Ruano

Spatial monitoring of temperature estimation during ultrasound heating therapy
H. Simões Duarte; André Santos; M. Graça Ruano

Optimization and Validation of $[^{13}\text{N}]-\text{NH}_3$ Production for Clinical Studies of Positron Emission Tomography in the Evaluation of Myocardial Perfusion
Cristina Serra; Ângela Neves; Antero J. Abrunhosa; Luís F. Metello

Geometric Sensitivity Analysis of a Lumbar Motion Segment FE Model
Ivo M. da Silva; J. C. P. Claro; André P. G. Castro

A Medical Device for Support of the Ankle Pathologies Diagnosis
R. Ferreira; F. Silva; P.Flores; A. Leal; J. Espregueira-Mendes

Simplified multibody model for dynamic loading analysis of the lumbar human spine
V. Sousa; J.C.P. Claro

An in vitro approach to unravel the modulation of the hypothalamic system by blood-circulating factors
JP Martins; CJ Alves; E Neto; DM Moreira; M Xavier; D Sousa; I Alencastre; M Lamghari

A Spectrophotometry based blood typing device
J. Fernandes; F. O. Soares; G. Minas

PLGA nanoparticles for calcitriol delivery
M J Ramalho; J A Loureiro; B Gomes; M F Frasco; M A N Coelho; M C Pereira

State of the art and challenges in bioprinting technologies, contribution of the 3D bioprinting in Tissue Engineering
J. B. L. Ferreiro; M. R. A. Calado; I. J. S. Correia

Authors index
Scientific Committee
Adélia Serqueira
Adelino Leite-Moreira
Adriana Tavares
Ana Mafalda Reis
Ana Mendonça
António Completo
António Ramos
António Torres Marques
Arcelina Marques
Augusta Silva
Augusto Faustino
Aurélio Campilho
Cecília Calado
Diamantino Freitas
Elza Fonseca
Eurico Seabra
Fernanda Gentil
Filipe Silva
Filomena Soares
Graça Minas
Helder Araujo
Henrique Almeida
Hugo Proença
Isabel Amaral
Isabel Rocha
João Abrantes
João Paulo Flores
João Paulo Vilas-Boas
João Santos Baptista
João Tavares
João Vilaça
Joaquim Gabriel
Jorge Ambrósio
Jorge Belinha
Jorge Coelho
Jorge Martins
Jorge Salvador Marques
José Alberto Duarte
José Carlos Reis Campos
José Machado da Silva
Leandro Machado
Luis Paulo Reis
Luis Rocha
Luisa Costa Sousa
Marco Parente
Margarida Machado
Maria Helena Figueiral
Mário Vaz
Miguel Castelo-Branco
Miguel Coimbra
Miguel Morgado
Miguel Velhote Correia
Nuno Rocha
Paulo Carvalhal
Paulo Gonçalves
Pedro Almeida
Pedro Granja
Pedro Martins
Pedro Moreira
Perpétua Pinto-do-Ó
Raúl Martins
Renato Natal
Ricardo Vardasca
Rubim Santos
Rui Bernardes
Rui Lima
Rui Rúben
Salomé Pinho
Sandra Ventura
Susana Oliveira Branco
Teresa Mascarenhas
Teresa Mendonça
Zhen Ma
Abstract—In this study, a three-dimensional dynamic model was built to simulate the drilling process in the composite materials. With an explicit dynamic simulation it is possible to obtain large structural deformation and to apply high intensity loading in a short time frame. Using this methodology, the influence of different cutting parameters were considered during the drilling process in typical composite materials. Also, similar tests were produced in laboratory using composite blocks. Each composite material was instrumented with strain gauges to obtain the strain in different surface positions during the drilling process. The results from the numerical methodology were compared with the experimental methodology. It was concluded when the feed-rate is higher the stresses and strains in the composite material are lower. The obtained numerical and experimental results were similar. Therefore the developed numerical model proved to be a great tool in this kind of analysis.

Index Terms—stresses; bone damage; bone drilling

I. INTRODUCTION

In medicine there are many surgical procedures that involve the bone tissue, often entail cutting, drilling or screwing operations of the bone. The success of these surgeries is dependent of many factors and the bone damage degree generated during the drilling process. Several studies have been published about specific problems that cause bone damage during the drilling process. One of these problems is the cutting effort achieved during the process and is directly related with the drilling parameters, particularly, the drill speed, the feed-rate and the applied force [1]. It is essential to understand and to improve the cutting conditions and all the variables involved to minimize the bone damage. The finite element method has been one of most useful tools for simulate the drilling bone process and evaluate the tissue biomechanics during the drilling [2].

II. EXPERIMENTAL AND NUMERICAL MODEL

In this study, two different methodologies were used to evaluate the damage bone from cutting efforts in drilling process. In the experimental methodology were used strain gauges for obtain the surface stresses in three composite blocks from Sawbones with similar density to the cortical bone. During the experimental tests 18 holes with instrumented strain gauges (6 holes in each composite block) were produced, (Fig. 1).

All holes were made using a conventional drill bit with 4mm of diameter, 30mm of depth and a point angle equal to 118°. The distances between the edge of the drilled hole and the strain gauge were measured, as represented in Fig. 2.

The drilling parameters considered in this work are described in Table 1. Three different feed-rates were used, in order to evaluate the influence on the drilling process. All the other parameters were considered as a constant.

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill diameter</td>
<td>4mm</td>
</tr>
<tr>
<td>Drill length</td>
<td>30mm</td>
</tr>
<tr>
<td>Drill speed (ω)</td>
<td>800rpm</td>
</tr>
<tr>
<td>Feed-rate (vf)</td>
<td>25, 50, 70mm/min</td>
</tr>
</tbody>
</table>

4th Portuguese Meeting in Bioengineering, February 2015
Portuguese chapter of IEEE EMBS
Faculty of Engineering of the University of Porto
Considering the experimental model, a three-dimensional dynamic numerical model was developed using LS-DYNA to simulate the drilling process. The numerical model uses the Finite Element Method (FEM) for the composite block and the drill bit, considering all variables in the drilling process. The geometry of the drill bit was built in SolidWorks program with same dimensions that drill bit used in the experimental model. The composite block with overall dimensions of 10x14x5mm was modelled as cortical bone specimen, as a part of the test composite material shown in Fig. 3.

Mechanical properties of the cortical bone and the drill bit were considered in this analysis and are summarized in Table 2 [3-6]. The drill bit was modelled as a rigid body in order to reduce the computing time and resources, with high stiffness (220-240 GPa) when compared with the cortical bone equal to 16 GPa [7]. The cortical bone behaviour was simulated using an elastic-plastic material, depending on the strain rate and the failure criterion of the material. The removal of bone during the drilling process was simulated by element deletion that occurs when the plastic strain of an element reached the limit [8]. LS-DYNA provides several criteria for removing elements during a numerical simulation.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Drill bit</th>
<th>Cortical bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>7850</td>
<td>800</td>
</tr>
<tr>
<td>Young’s Modulus (GPa)</td>
<td>200</td>
<td>16.7</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Yielding Stress (MPa)</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>Tangent Modulus (MPa)</td>
<td>—</td>
<td>2083.3</td>
</tr>
<tr>
<td>Hardening Parameter</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>Cowper-Symonds model</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.0001</td>
</tr>
<tr>
<td>Failure Plastic Strain</td>
<td>—</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

The numerical model was meshed using SOLID164 elements (8 nodes with three degrees of freedom at each node in X, Y, Z directions), as show in Fig. 4. This element is used in explicit dynamic analyses only.

Several mesh convergence study was carried out to obtain a more suitable model for this kind of simulation. A mesh size discretisation of cortical bone was obtained in the vicinity of the drilled place with size equal to 0.5mm for the finite elements edge, and a coarse mesh was used in the block away from the location of the drill bit. The composite block was kept fixed in all vertical faces, while the drill bit was constrained to rotate only about its own longitudinal axis with a specified speed and feed-rate downwards into the composite block. The numerical analysis was performed with the same drilling parameters used in the experimental model as shown in Table 1 and represented in (Fig. 5).

Contact elements were used to simulate the contact between the drill bit and the cortical bone, and defined by the “Eroding” contact algorithm available in LS-DYNA. This algorithm allows one or both outer surfaces suffer damage in contact and continue with the remaining internal elements. The frictional contact between the drill bit and the cortical bone was modelled with a constant coefficient of friction equal to 0.3 [9]. The simulations require on average 72 hours on quad-core i7-4790k with 16 GB RAM.

III. RESULTS AND DISCUSSION

The aim of this work was to investigate the levels of strains and stresses induced in the cortical bone, caused by a cutting tool. Experimental and numerical procedures were used and the results comparison were discussed. The strains were obtained during the drilling depth using strain gauges and the generated normal stresses were calculated at the composite blocks surface. Fig. 6 and 7 show the evolution of stresses obtained in six different holes performed with feed-rates equal to 25, 50 and 75mm/min, during the drill depth.
The experimental results show that generated stresses in the bone increase with tool penetration. The greater of the drilled hole depth, produces high stresses values generated in the bone. These results are in agreement with studies performed by Alam et al. [10].

Through of the different feed-rates, it was found that the increase of feed-rate decreases the generated stresses in the bone, as shown in Fig. 6 and 7. The maximum value of the stresses obtained in experimental model was approximately 50MPa at the end of the drilling depth with a feed-rate equal to 25mm/min.

In the numerical model were performed different numerical simulations with different feed-rates (25, 50 and 75mm/min) to compare the stresses results to the experimental method. Fig. 8 represents the levels of von Mises stresses in different stages of drilling until to complete the drilling of the cortical bone. For each feed-rate was considered an adequate time for complete penetration of the cortical bone (5mm).

Also in the numerical model, with the progress of drill penetration, the level of von Mises stresses in the bone increases, reaching a maximum value when the drill bit penetrated completely the cortical bone. The level of maximum stress was found in the drilled area and its immediate vicinity.

In order to compare the numerical with experimental results, different nodal positions were considered and the average of the normal stresses were calculated. Table 3 shows the mean of normal stresses located near of each hole obtained experimentally and numerically. The calculated distance between the edge of the drilled hole and the strain gauge was also considered in both methodologies.

According the results present in Table 3 it was found that in both methodologies when the feed-rate parameter increases the stresses and strains in the composite materials decreases. It was also found that for the most remote areas of the drilling zone the normal stresses in bone surface are lower. The levels of maximum stresses were found near of the drilled area vicinity, as already observed in the numerical model, Fig. 8. The numerical model was validated using the experimental model, and both methods are in agreement.
Table 3. Normal stresses (MPa) in experimental and numerical models.

<table>
<thead>
<tr>
<th>Feed-rate (mm/min)</th>
<th>Experimental</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Numerical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1</td>
<td>H2</td>
<td>H3</td>
<td>H4</td>
<td>H5</td>
<td>H6</td>
<td>Average</td>
</tr>
<tr>
<td>V<sub>f</sub>=25</td>
<td>14.87 (L=3.5mm)</td>
<td>14.32 (L=4.0mm)</td>
<td>13.77 (L=4.0mm)</td>
<td>11.57 (L=5.5mm)</td>
<td>11.52 (L=5.5mm)</td>
<td>11.09 (L=5.5mm)</td>
<td>12.86 12.88</td>
</tr>
<tr>
<td>V<sub>f</sub>=50</td>
<td>17.90 (L=3.0mm)</td>
<td>16.98 (L=3.0mm)</td>
<td>12.25 (L=3.5mm)</td>
<td>10.70 (L=4.0mm)</td>
<td>8.51 (L=4.5mm)</td>
<td>7.86 (L=5.0mm)</td>
<td>12.37 11.85</td>
</tr>
<tr>
<td>V<sub>f</sub>=75</td>
<td>11.03 (L=3.5mm)</td>
<td>9.07 (L=4.0mm)</td>
<td>8.80 (L=4.0mm)</td>
<td>8.40 (L=4.5mm)</td>
<td>7.48 (L=4.5mm)</td>
<td>7.42 (L=4.5mm)</td>
<td>8.70 8.68</td>
</tr>
</tbody>
</table>

H: drilled hole number, L: distance between the edge of the drilled hole and the strain gauge.

IV. CONCLUSIONS

There are several studies in the literature about the influence of the different parameters in bone drilling processes, however there is no clear agreement between different authors. In this study two different methods were used to evaluate the stresses distribution in the cutting region and in vicinity areas, obtained for different drilling parameters. Using different feed-rates it was possible to verify a decrease of stresses and strains in composite materials when the feed-rate is higher. As foreseen, the normal stresses in the far hole regions were lower than near of the hole region.

In this study the three-dimensional finite element model proved to be a great analysis tool to simulate the bone drilling dynamic process, useful to evaluate the performance of surgical tools alternatively to the hard theoretical work. The numerical model should be applied in various cases of drilling, considering different variables and allowing to obtain quickly and accurate results in all involved variables.

ACKNOWLEDGMENT

The author of this paper acknowledges the support of the Project “Biomechanics: Contributions to the healthcare” co-financed by the Regional Operational Programme of North (ON.2 - The New North), the National Strategic Reference Framework (NSRF), through the European Development Fund (ERDF).

REFERENCES

Authors index

Symbols

- **A**
 - Abrantes, João M.C.S. 305, 309
 - Abrunhosa, AJ 63
 - Abrunhosa, Antero J. 355
 - Abuimara, Abdellatif 111
 - Aires-Barros, M.R. 9
 - Aires-Barros, M. Raquel 87
 - Aleixo, Pedro 305
 - Alencastre, I 377
 - Almeida, M. Catarina M. D de 49
 - Almeida, Rui 171
 - Alves, CJ 377
 - Alves, Francisco 45
 - Alves, Raquel S. 47
 - Amorim, Lúcia 65
 - Andrade, Stephanie 79
 - Antunes, Bruno 135
 - Antunes, Luis 27
 - Araújo, Aderito 231
 - Araújo, Adérito 53, 247
 - Araújo, A.R.G. 241
 - Archinti, Marco 87
 - Areias, B. 29
 - Atalaia, Tiago 309
 - Azevedo, A.M. 9
 - Azevedo, Ana M. 87
- **B**
 - Baptista, A.M. 9
 - Baptista, Sónia 107
 - Barbeiro, Silvia 231
 - Barbeiro, Sílvia 53, 247
 - Barros, Draganica P.C. de 9, 23
 - Barroso, Maria 93
 - Bastier, Stephane 217
 - Bastos, Fátima C. 51, 57, 269
 - Batista, Ana 295
 - Belinha, J. 31
 - Belinha, Jorge 263, 279, 301, 315
 - Bernardes, Rui 53, 247
 - Bezerra, Karolina 161
 - Bicho, D. 7
 - Blanco, A 63
 - Borges, João Paulo 25
 - Borlinhas, Filipa 41
 - Botelho, Maria Filomena 35
 - Branco, Tiago 35
 - Brandão, Sofia 19, 41
- **C**
 - Calado, Cecília R.C. 61, 285, 291
 - Calado, M. R. A. 395
 - Calvo, Begoña 227
 - Campos, Sara R.R. 9
 - Caramelo, Francisco 35, 53, 247, 253, 325
 - Caramlo-Nunes, C. 7
 - Carmo, J. P. 131
 - Carneiro, V.H. 187
 - Carvalho, Mafalda 205
 - Carvalho, Vítor 151, 161
 - Carvalho, Vítor 125
 - Castanheira, E. M. S. 131
 - Castelo-Branco, Miguel 107
 - Castro, André P. G. 359
 - Cesário, M. Teresa 49
 - Claro, J. C. P. 359
 - Claro, J.C.P 331
 - Clário, J.C.P. 241, 371
 - Coelho, M A N 389
 - Coelho, Manuel A. N. 79
 - Coimbra, A. Paulo 3, 11, 15
 - Corceiro, Vanessa N. 57, 269
 - Correia, António 53, 247
 - Correia, Carlos 59, 135
 - Correia, I. J. S. 395
 - Correia, J.H. 183
 - Correia, Marta 43
 - Correia-Neves, M. 165
 - Correia, R. G. 131
 - Correia, Rui 27
 - Costa, Durval Campos 47
 - Couceiro, M. 63
 - Couto, Mafalda 69
 - Crespo, P. 63
 - Crespo, Paulo 39, 51, 55
 - Crisóstomo, Manuel 3, 11, 15
 - Cruz, Carla 65
 - Cruz, Stephane 3, 11, 15
 - Cunha, Bernardo 61