BIODENTAL ENGINEERING

R.M. Natal Jorge
J.C. Reis Campos
Mário A.P. Vaz
Sónia M. Santos
João Manuel R.S. Tavares
EDITORS

A BALKEMA BOOK
Biodental Engineering III

Editors

R.M. Natal Jorge
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

J.C. Reis Campos
Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal

Mário A.P. Vaz
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Sónia M. Santos
MedSupport-Engenharia e Apoio à Decisão, Lda, Portugal

João Manuel R.S. Tavares
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
Table of contents

Acknowledgements ix
Preface xi
Thematic sessions xiii
Scientific committee xv

Contributed papers

A variable finite element model of the human masticatory system
S. Martinez, J. Lenz, K. Schweizerhof & H.J. Schindler 3

Occlusal splint vs. anterior deprogrammer in bruxism therapy—is surface electromyography a valid tool?
B. Dalewski & B. Frączak 9

Fracture toughness in interface systems Ni-Cr/ceramic, alumina/ceramic and zirconia/ceramic
C.P.S. Porto, M. Parente, R.M.N. Jorge, L.C. Pereira & S. Griza 15

The use of GBR in bone regeneration: An histologic study in the rabbit model
I. Guerra, M.H. Figueiral, J.C.R. Campos, F. Branco, M. Vasconcelos, A. Afonso & R.Z. Gomes 21

Effect of repeated tightening and loosening cycles of prosthetic screws in the micromovements of the abutment-implant assembly: A pilot study
A. Messias, S. Rocha, N. Calha, P. Nicolau, F. Guerra & M.A. Neto 27

Stress analysis of human periodontal ligament: Implications for its damage

Parametric evaluation of cortical bone thickness behavior on stress/strain of a dental implant

3D Finite Element biomechanical model of the mandible-mucosa-expander apparatus set

Computer-aided design and manufacturing of dental implants with irregular geometries

Automatic reconstruction of dental CT images using optimization

Overbleaching effects on mineral content and roughness of human enamel
M.S.F. de Miranda, R.S. Santos, M.J. dos Anjos, E.M. da Silva & C.R. Perez 63

The assessment of the generated temperature by the drill bit in the bone tissue
The CAD technology in removable prosthodontics
M.A. Sampaio-Fernandes, M. Sampaio-Fernandes, P. Fonseca, P.R. Almeida & M.H. Figueiral

Clinical trial—in vivo endosseous implants micromovements measuring with 3D Digital Image Correlation method
T. Rodrigues, F. Moreira, F. Guerra, P. Nicolau & M.A. Neto

Simulation of remodeling of tissue engineered condylar cartilage under static hydrostatic pressure
C. Bandeiras, A. Completo & A. Ramos

Cyclic fatigue resistance of five rotary endodontic instruments
B. Chavell-Díaz, L. Forner, C. Llena, R. Madureira & F. Tadeu

A biomechanical analysis of a maxillary overdenture retained by divergent implant attachments

Effects of micromovement on the strain distribution of an implant supported zirconia dental bridge structure during loading: A 3D digital image correlation and 3D finite element analysis
N. Calha, T. Rodrigues, A. Messias, L. Roseiro, P. Nicolau & M.A. Neto

Comparative analysis of mandibular symphysis plates

Effect of hydrogen peroxide on the inorganic composition of enamel
R.M. Moreira, F.S. Calazans, A.C. Lantosa, R.S. Santos, M.J. dos Anjos, J.T. de Assis & M.S. Miranda

Integration of image processing and 3D techniques to simulate aesthetic dental treatments
R. Pulido, J.J. Jiménez & A. Rodriguez

Analysis of autoclave induced dimensional changes on addition silicones
M. Só, O. Lino, P.R. Almeida, C. Leal, J.C.R. Campos & J. Sampaio-Fernandes

Relationship between implant primary stability (torque and ISQ) and bone density assessed by CBCT—clinical trial

Fracture resistance of single-tooth implant-supported
P.A.G. Piloto & J.F. Piloto

An electromagnetic tracker system for the design of a dental superstructure

Optimization of a perfusion bioreactor for tissue engineering
D. Freitas, H.A. Almeida & P. Bártilo

Reinforced PCL scaffolds with Eggshell powder
S.I. Biscaia, T.F. Viana, H.A. Almeida & P. Bártilo

Optimizing regions for characterization of thermal images in medical applications
A. Duarte, L. Carrão, M. Espanha, T.F. Viana, D. Freitas, P. Bártilo, P. Faria & H.A. Almeida

Mechanical behavior of dentures clasps in acetal resin and cobalt-chromium: A numerical analysis

Gingiv a Assessment Tool—a clinical decision support system to evaluate the esthetic risk for gingiva-shade ceramics in a fixed dental prosthesis
P.C. Viana, A. Correia, I. Lopes, Z. Kovač & L. Eustáquio

Geometric and structural comparison of anatomic models
R. Zeibak, D. Freitas, H.A. Almeida & P. Bártilo
Finite element analysis of bio-inert mass effect on stress reduction in bone-dental implant interface 179
G. Mehdi, A. Belarbi, B. Mansouri & Z. Azari

Ideal spacing according to different types of cement—Everest system (KaVo®) 185
P. Rocha-Almeida, P. Cândido, C. Leal, J. Reis-Campos & J. Sampaio-Fernandes

Time dependent constitutive model for a biopolymer derived from castor oil polyurethane 191
A.C. Vieira, V. Tita, R.R.C. da Costa & R.M. Guedes

IL1 gene cluster polymorphisms and peri-implant disease 197
M. Sampaio-Fernandes, P. Vaz, P. Fonseca, J. Reis-Campos & M.H. Figueiral

Quality evaluation of websites with information on child dental trauma in Portuguese language 201
M. Crespo, J. Carvalho, A. Correia & P. Mesquita

Numerical analysis of a teeth restoration: A meshless method approach 207
C.S.S. Tavares, J. Belinha, L.M.J.S. Dinis & R.M.N. Jorge

The bone tissue remodelling analysis in dentistry using a meshless method 213
J. Belinha, L.M.J.S. Dinis & R.M.N. Jorge

Dental tissue classification using computational intelligence and digital image analysis 221
G. Vaccaro & J.I. Pelaez

Influence of composite temperature on the marginal seal in dental restorations 227
S.A. Bote, J.M. Arroyo, J.M. Osorio, P.C. Lobato & M.C.M. Céspedes

Raman Confocal Microscopy to study aesthetic restorative materials 231
S.A. Bote, J.M. Arroyo, J.M. Osorio, P.C. Lobato & M.C.M. Céspedes

Biomechanical analysis of typical structured dental implants and surrounding bone tissues 235
X. Zhang, X. Chen, G. Zhang & J. Chen

Characterization of trabecular bone morphology by isolation and construction of cubic models using computerized microtomography 241

Optimization of the procedure for obtaining DPSCs by means of fragile fracture in clean room conditions 249

Evaluation of collagen fibers orientation around different connection implants 253

Evaluation of the bone formation on titanium implants electrically stimulated: Study in dogs 259
L.M. Bins-Ely, E.B. Cordero, C.A.M. Benfatti & R.S. Magini

Thermal residual stresses in functionally graded dental restorations 263

Study of the porcelain powder injection parameters for the production of zirconia reinforced porcelain composites 267

A finite element study of the Quad-helix appliance deformation when submitted to a force 271
A.P. Botto, M.A. Vaz & J.M. Ustrell

Evaluation of orthodontic forces applied by the Quad-helix apparatus 275
A.P. Botto, M.A. Vaz & J.M. Ustrell
Degradation modelling of bio-polymers used as dental scaffolds

Preliminary inertia study of body postures during dental procedures
V. Silva, J. Reis-Campos, M.H. Figueiral, P. Fonseca, M.E. Pinho & M.A. Vaz

All-ceramic CAD-CAM Maryland bridge—a numerical stress analysis

Evaluation of the effects produced by different insertion torques on the internal surface of the neck of different implants systems

Author index
Preface

Dentistry is a branch of medicine with peculiarities and diverse areas of action, being commonly considered as a very interdisciplinary area. The development, validation and clinical use of more competently techniques and technologies have been of great demand and interest.

The purpose of these BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to solidify knowledge in the field of bioengineering applied to dentistry promoting a comprehensive forum for discussion on the recent advances in the related fields in order to identify potential collaboration between researchers and end-users from different sciences.

This book contains the full papers presented at the 3rd International Conference on Biodental Engineering (BIODENTAL 2014), which was held in Póvoa do Varzim, Porto, Portugal, in June 22–23. The conference had 2 Invited Lectures, and 72 contributed presentations, which were selected by the conference scientific committee, and originated from 14 countries: Belgium, Brazil, China, Chile, Ecuador, France, Germany, Greece, Italy, Poland, Portugal, Romania, Spain and the United States of America.

During BIODENTAL 2014, several topics and applications were addressed, including biomechanical disorders, orthodontics, implantology, aesthetics, dental medicine, medical devices and medical imaging.

The conference co-chairs would like to take this opportunity to express their gratitude to the conference sponsors, all members of the conference scientific committee, invited lecturers, session-chairs and to all authors for submitting and sharing their knowledge.

R.M. Natal Jorge
J.C. Reis Campos
Mário A.P. Vaz
Sónia M. Santos
João Manuel R.S. Tavares
(Conference co-chairs)
Thematic sessions

Under the auspicious of Biodental 2014, two Thematic Sessions were organized:

Bone tissue remodelling numerical analysis

Jorge Belinha, Instituto de Engenharia Mecânica, Pólo FEUP, Portugal
António Completo, Departamento de Engenharia Mecânica, Universidade de Aveiro, Portugal

Biomaterials in oral rehabilitation

Ricardo de Souza Magini, Universidade Federal de Santa Catarina, Brazil
Julio Souza, Universidade Federal de Santa Catarina, Brazil/Universidade do Minho, Portugal
Cesar Benfatti, Universidade Federal de Santa Catarina, Brazil
Claudia Volpato, Universidade Federal de Santa Catarina, Brazil
Márcio Fredel, Universidade Federal de Santa Catarina, Brazil
Filipe Silva, Universidade do Minho, Portugal
Bruno Henriques, Universidade do Minho, Portugal
Mihaela Buciumeanu, Universidade do Minho, Portugal
Scientific committee

All works submitted to BIODENTAL 2014 were evaluated by an International Scientific Committee composed by 55 expert researchers from recognized institutions:

- Afonso Pinhão Ferreira, University of Porto, Portugal
- André Correia, University of Porto, Portugal
- António Completo, University of Aveiro, Portugal
- Carla Roque, IDMEC, Portugal
- Christoph Bouraulet, Bonn University, Germany
- Cláudia Barros Machado, CESPU, Portugal
- Cornelia Kober, Hamburg University of Applied Sciences, Germany
- Daniela Iacoviello, Sapienza University of Rome, Italy
- Edson Capello, UNESP, Brazil
- Eduardo Borges Pires, University of Lisbon, Portugal
- Eduardo Pires, Catholic University of Portugal, Portugal
- Eliza Maria Morais Fonseca, Polytechnical Institute of Bragança, Portugal
- Estevam Las Casas, Federal University of Minas Gerais, Brazil
- Fernanda Gentil, IDMEC, Polytechnical Institute of Porto, Portugal
- Gerhard A. Holzapfel, Graz University of Technology, Austria
- Helena Figueiral, University of Porto, Portugal
- Henrique Almeida, Polytechnical Institute of Leiria, Portugal
- Hernani Reis Lopes, Polytechnical Institute of Porto, Portugal
- Ioannis Misirlis, University of Patras, Greece
- Iracema Braga, Brazil
- João Batista Novaes Júnior, Federal University of Minas Gerais, Brazil
- João Carlos Pinho, University of Porto, Portugal
- João Eduardo P.C. Ribeiro, Polytechnical Institute of Bragança, Portugal
- João Manuel R.S. Tavares, University of Porto, Portugal
- João Paulo Flores Fernandes, University of Minho, Portugal
- Joaquim Gabriel, Universidade do Porto, Portugal
- John Middleton, Cardiff University, UK
- Jorge Belinha, IDMEC, Portugal
- Jorge Marinho, IPO, Portugal
- José Mário Rocha, University of Porto, Portugal
- Kazem Alemzadeh, University of Bristol, UK
- Leopoldo Forner Navarro, University of Valencia, Spain
- Luis Geraldo Vaz, UNESP, Brazil
- Luis Pires Lopes, University of Lisbon, Portugal
- Luis Vieira Pinto, Ceramed, Altakitin, Portugal
- Marcos Parente, IDMEC, Portugal
- Marcos Pinotti Barbosa, Federal University of Minas Gerais, Brazil
- Maria Cristina Manzanares Céspedes, University of Barcelona, Spain
- Mário Forjaz Secca, Universidade Nova de Lisboa, Portugal
- Mário Vasconcelos, University of Porto, Portugal
- Mário Vaz, University of Porto, Portugal
- Miguel Pinto, University of Porto, Portugal
- Mildred Ballin Hecke, Federal University of Paraná, Brazil
- Oliver Rührle, University of Stuttgart, Germany
- Pablo Jesús Rodríguez Cervantes, Universitat Jaume I, Spain
• Paula Vaz, University of Porto, Portugal
• Paulo Alexandre Gonçalves Piloto, Polytechnical Institute of Bragança, Portugal
• Paulo Melo, University of Porto, Portugal
• Paulo Rui Fernandes, University of Lisbon, Portugal
• Pedro Martins, IDMEC, Portugal
• Pedro Mesquita, University of Porto, Portugal
• Pedro Miguel Gomes Nicolau, University of Coimbra, Portugal
• Philippe G. Young, University of Exeter, UK
• Reis Campos, University of Porto, Portugal
• Renato Natal Jorge, University of Porto, Portugal
• Sampaio Fernandes, University of Porto, Portugal
• Stephen Richmond, Cardiff University, UK
• Yongjie Zhang, Carnegie Mellon University, USA
Contributed papers
The assessment of the generated temperature by the drill bit in the bone tissue

Instituto Politécnico de Bragança, Bragança, Portugal

R. Cerqueira
Rua Cerqueira Médico-Dentista, Celorico de Basto, Portugal

ABSTRACT: This work aims to evaluate the generated temperature in bone tissue during a drilling process. Different clinic visits were carried out to follow-up a dental implantology and collected thermographic images for reading the temperature generated during the drilling. Simultaneously an experimental procedure was adopted with the acquisition of four blocks of Sawbones with similar properties to the trabecular and cortical bone and different densities. The goal of this experiment resulted in a drilling process to assess the generated temperature on the drill and simultaneously on the bone material. The obtained results allow to conclude that a more dense material reaches highest values. Regarding the temperatures recorded in the drill, the largest heating is also recorded in denser bone. In clinical practice the temperature average in the drill are lower (not exceeds 33°C) than the conducted in the experiments (42°C for denser cortical), since the process occurs with fluids irrigation.

1 INTRODUCTION

Science and technology applied to health are meant to enhance the quality of the human life. In dental implants placement the variables that affect the bone drilling process are: speed, material, diameter, length and geometry of the drill point, (Fonseca et al. 2014; Fonseca et al. 2013, Monteiro et al. 2013). There are several researches on how to avoid adverse effects on the bone patient structure.

Hillery's research supported the earlier findings of Lundskog highlighting that necrosis can be induced if the bone is exposed over 30s at temperatures above 50°C (Hillery, 1999). In general, the literature indicates that if the temperature rises above 55°C, in a period of 1,5 minutes, several weeks will be needed for a new bone regeneration process (Sousa, 2009). In the process of drilling the question is the need, or not, of irrigation processes. Augustin et al. 2008, studied the thermal osteonecrosis and the bone drilling parameters. The study aimed to evaluate the influence of different parameters of drilling with increasing temperature of the bone. With this study it was possible to ascertain that when using external irrigation the temperatures were lower, not reaching the critical temperature (T > 55°C). Without irrigation, the temperature for the same combination of parameters was between 31.4–55.5°C. When a drill bit with a diameter of 4.5 mm was used to drill with higher speeds, temperatures above the critical value were recorded. If the feed rate is high, a less temperature increased in the bone is verified. Thus, they were able to conclude that the external irrigation is the most important factor of cooling. The increase in diameter and in drill speed caused an increase in the temperature of the bone (Augustin et al. 2007). According to Salgueiredo et al. 2009, the use of irrigation processes can lead to a decrease of temperature in the bone until 4°C.

The main goal of this work is to evaluate the developed temperatures in bone tissue due to a drilling process, and verify the hypothesis of the thermal necrosis occurrence. Experimental methods were used in the laboratory based on the use of thermography and thermocouples during bone drilling in different materials. The follow-up of patients was also performed during the dental implants placement for data collecting from thermographic images.

2 MATERIAL AND METHODS

2.1 Material

In this study for the experimental setup, four blocks from Sawbones, a computer, a data acquisition MGC Plus system, type K thermocouples, a video camera, a thermographic camera and a CNC programmed machine for drilling blocks were used.
The drills used by CNC in experimental setup have an angle of 118°, once in the literature it is stated that the lower temperatures were generated for drills with this value (Basiaga et al. 2011). The four blocks from Sawbones with different densities (+D and -D) have similar properties to the human bone (cortical C or trabecular T), Figure 1.

Regarding the material densities, the cortical most dense has 800 kg/m³ and the less dense is equal to 80 kg/m³. The most dense trabecular material has a density of 320 kg/m³ and the less with 120 kg/m³.

2.2 Clinical component

Dental health professionals who perform the drilling process for placing a dental implant has a follow-up protocol on the use of required drills. These drills have a specific length and diameters depending on the diameter and the length of the implant.

The procedure used at the clinic who collaborated on this study was the following: first is performed a drilling point with a drill called spear; then some perforations are performed with twist drills and different diameters, depending on the area of the mandible/maxilla of each patient; after the open hole is placed the implant. The drilling speed is 800 rpm and the location of the mandible/maxilla with drilling is irrigated with saline at room temperature. During the clinical study a thermographic camera was used for temperature measurement on the drill during the drilling process. Figure 2 represents an example of these images.

Table 1 represents the temperatures obtained in the drill, during the follow-up for four patients.

Analyzing the Table 1 the temperature of the drill was never greater than 32.7°C. Whereas the temperature generated in the bone is not higher than the temperature in the drill, it is concluded that never occurred thermal necrosis.

2.3 Experimental setup

A CAD drawing in SolidWorks was elaborated, with all indications to be used during the process of drilling on the CNC machine, Figure 3. In each block, and on one side, 5 drillings are made with only one drill (Side A) and the opposite (Side B) are performed 5 drillings but for different passages of drills. Figure 3 is a schematic drawing of the blocks sides (Side A and B) where a, b and c represent the lateral holes for thermocouples and f1, f2, f3, f4 and f5 represent the sequence of drilling during the process.

The thermographic camera will analyze the temperature during the drilling process on the bit, and the thermocouples will recording the temperature values in different materials and positions. Figures below show different images of drillings in different materials and the respective thermographic images.
2.3.1 Temperature analysis on the drill

With the use of the thermographic camera, temperature values were recorded in the drills at the end of the drilling, on the surface block.

Table 2 shows the number of samples, the mean and standard deviation of the temperatures values for different drills during the drill in different materials.

Analysing the average values it turns out that for material “C+D” the highest temperature was recorded using the drill with a diameter of 4 mm, followed by the 2 mm and finally the drill with 3 mm.

Regarding material “C−D” the drill bit with a diameter equal to 4 mm achieves the highest temperature, but the drill with 3 mm registers a temperature slightly above the drill with a diameter of 2 mm.

Table 2. Temperatures obtained in 3 phases of drilling (Side B).

<table>
<thead>
<tr>
<th>Drill bit diameter (mm)</th>
<th>Material (\phi 2)</th>
<th>(\phi 3)</th>
<th>(\phi 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C + D</td>
<td>(5) 39.20 ± 1.68</td>
<td>(5) 37.84 ± 2.07</td>
<td>(5) 48.04 ± 1.98</td>
</tr>
<tr>
<td>C − D</td>
<td>(5) 21.84 ± 0.15</td>
<td>(5) 21.90 ± 0.36</td>
<td>(5) 22.58 ± 0.84</td>
</tr>
<tr>
<td>T + D</td>
<td>(5) 24.30 ± 0.62</td>
<td>(5) 24.52 ± 1.02</td>
<td>(5) 26.70 ± 1.33</td>
</tr>
<tr>
<td>T − D</td>
<td>(5) 22.28 ± 0.49</td>
<td>(5) 22.54 ± 0.80</td>
<td>(5) 23.44 ± 0.91</td>
</tr>
</tbody>
</table>

Note: \(N \) = Samples; \(M \) = Average; \(SD \) = Standard Deviation.

Table 3. Temperatures obtained in one phase drilling (Side A).

<table>
<thead>
<tr>
<th>Drill bit diameter (mm)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi 4)</td>
<td></td>
</tr>
<tr>
<td>C + D</td>
<td>(4) 66.80 ± 0.99</td>
</tr>
<tr>
<td>C − D</td>
<td>(5) 24.24 ± 0.70</td>
</tr>
<tr>
<td>T + D</td>
<td>(5) 30.90 ± 2.13</td>
</tr>
<tr>
<td>T − D</td>
<td>(5) 23.54 ± 1.16</td>
</tr>
</tbody>
</table>

Note: \(N \) = Samples; \(M \) = Average; \(SD \) = Standard Deviation.

In relation to the material “T + D”, the behaviour was similar to the “C − D” but with higher values, i.e. the drill bit with 4 mm has a temperature higher than the drill with 3 mm and this temperature higher than the drill bit with 2 mm.

The material “T − D” also has a similar behaviour to the material “C − D” although with higher temperatures, the drill bit with 4 mm has the highest temperature followed by the drill with 3 mm later by the 2 mm.

In general, it is possible to affirm that the highest recorded temperature was when using a 4 mm drill.

In Table 2 it can be seen that the higher temperature values are obtained with drill bit in the more dense material. In this material the drilling effort is higher compared to a less dense material, which means greater chip amount. For the standard deviation, it turns out that has higher values in the material “C+D”. Also the drill bit with a diameter of 4 mm has a standard deviation higher than the values of the remaining drills, except in the denser material.

Table 3 shows the number of samples, the mean and the standard deviation of the temperature values obtained with a single drilling pass and with a diameter equal to 4 mm for all different materials.

Analysing the average values in table 3, the highest temperature recorded in the drill bit was in the material “C+D”, followed by the material
"T+D", "C−D" and finally the "T−D". Once more, the denser material has the greater the temperature value. However the material "T−D" has a density higher than material "C−D", but as the first has a spongy structure there is a greater release of temperature. With respect to the standard deviation values, the highest value was recorded in the material "T+D".

2.3.2 Temperature analysis in bone

The use of thermocouples allows to read and record the generated temperature in the material. As represented in Figure 3, thermocouples were placed at different distances from the main hole. The following figures show the results obtained with thermocouples, only to the hole 1 of all 4 blocks in question, considering the side B of the block that includes the 3 drilling passes.

Analyzing the figures 8 to 11 it is possible to check that the material with highest temperature values is the material "C+D", followed by the material "T+D", "T−D" and finally the "C−D". The material with highest density has high values of temperatures. It is verified that the drill bit with 2 mm provides greater warming in material, this drill produces a greater effort in relation to the drills used subsequently. The results on each block, side A, and for the thermocouples, considering one drilling phase, are presented in Figures 12 to 15, for hole 1 of each material as an example.

On the drilling with a drill bit of 4 mm, Figures 12 to 15, it turns out that in material "T−D" there is a peak of high temperature. For the material structure with several cavities and low density, the thermocouple may have come into contact with the bit, giving rise to this peak. Disregarding this effect, the material "C+D" presents the highest temperature, followed by the material "T+D" and finally the "C−D". Comparing the results obtained in
2.3.3 Comparison between methods
For the comparison between the two used experimental methods the temperature charts behaviour were obtained, in the drill bit and in the bone, for the different material densities. To proceed with temperature registration in the drill bit, only the values out the drill bit were obtained with the thermographic camera. Concerning the temperature in the bone, the average temperatures of the positions a, b and c (Figure 3) were obtained with the thermocouples.

Analysing the graphs relating to materials with higher densities, Figures 16 and 17, “C+D” and “T+D”, with 800 and 320 kg/m³ respectively, a similar behaviour was observed. However, in more dense cortical material, the temperatures were recorded higher compared to the denser trabecular.

With regard to materials with lower density also there are a similar behaviour, Figures 18 and 19. In this case, material “C-D” has a density of 80 kg/m³ while the “T-D” has a density of 120 kg/m³. The method that has a greater variability is the measurement of temperatures in drill bits.

Analyzing the Figure 20 and the recorded temperature, material with a higher density, i.e. “C+D”, has the highest values. For the remaining materials “T+D” and “C+D” the recorded temperature are higher than of the lower density. It is possible to conclude that for more dense material and without cavities, greater is the temperature recorded on the drill bit. This is justified by the greater effort required by the drill bit during cutting and chip amount production. For recorded

Figure 13. Material C-D, Side A.

Figure 14. Material T+D, Side A.

Figure 15. Material T-D, Side A.
The results obtained in dental surgery show that with the use of irrigation and combining different drilling parameters, the thermal necrosis does not occur once the temperature did not exceed the 32.7°C.

Given the experimental setup, it is possible to conclude that the temperature increases in the drill, is according the density and the structure of the material, i.e., if the material is denser, the temperature in the drill is higher than the less dense material. If the material has cavities in its structure, the temperature on the drill is not as high as in compact material. As regards the evaluation of the temperature in the material it is concluded that the material “C + D” has the highest values of temperature, followed by the material “T + D”, “T – D” and finally the “C – D”.

Comparing the graphics related with the use of three drill bits for single drill, it is verified that the drill with 4 mm releases greater heat in less dense materials and the drill with 2 mm releases more heat in denser materials.

Comparing the two methods it is possible to observe that the temperature in the drill is always higher than the temperature of the material. Taking into account the data provided by the thermographic camera and the results obtained with the thermocouples, can be concluded that the thermal necrosis doesn’t occurred, since the material temperature never been above 50°C.

3 CONCLUSION

The results obtained in dental surgery show that with the use of irrigation and combining different drilling parameters, the thermal necrosis does not occur once the temperature did not exceed 32.7°C.

Given the experimental setup, it is possible to conclude that the temperature increases in the drill, is according the density and the structure of

REFERENCES

