Name: | Description: | Size: | Format: | |
---|---|---|---|---|
11.31 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Os ossos humanos são bastante fortes e capazes de resistir a forças de compressão e de
flexão elevadíssimas.
O principal objetivo desta dissertação é determinar o deslocamento, a deformação e a
tensão a meio do osso, diáfise, através do teste de flexão de quatro pontos. O
procedimento de cálculo foi desenvolvido através de procedimentos analíticos,
numéricos e experimentais.
Foram utilizados 4 ossos grandes de quarta geração, com fixação de uma placa metálica
e de seguida foi realizada uma análise experimental, numérica e analítica.
No método numérico foi desenvolvido o modelo 3D de elementos finitos (ANSYS), e
comparado com a solução dos métodos analítico e experimental.
Os resultados obtidos indicam que as tensões são maiores no local da fratura num
estado incial de osteossíntese, e à medida que o osso se vai regenerando estas tensões
passam a ser menores nas placas metálicas fixadas aos ossos.
Os resultados analíticos estão de acordo com os resultados numéricos e ambos se
aproximam dos experimentais. O que significa que o modelo numérico é um
instrumento importante na análise biomecânica de fraturas.
Human bones are quite strong and able to resist to compression from bending and moments very high. The main objective of this dissertation is to calculate the displacement, deformation and stress in the middle of the bone shaft, through the fourpoint bending test. The calculation procedure was developed by analytical, numerical and experimental procedures. In the method was developed 3D finite element model (ANSYS), and compared with the solution of the analytical and experimental methods. Four bones fourth generation with a metal plate were tested and then the numerical model using a finite element analysis was validated. The results obtained indicate that normal Stresses are greatest at the site of fracture in a initial state of osteosynthesis and as the bone goes regenerating these tensions will be smaller in metal plates fixed to the bones. The analytical results are in acordance to the numerical results and with the experimental results. Which means the numerical model is an important instrument in biomechanical analysis of fractures.
Human bones are quite strong and able to resist to compression from bending and moments very high. The main objective of this dissertation is to calculate the displacement, deformation and stress in the middle of the bone shaft, through the fourpoint bending test. The calculation procedure was developed by analytical, numerical and experimental procedures. In the method was developed 3D finite element model (ANSYS), and compared with the solution of the analytical and experimental methods. Four bones fourth generation with a metal plate were tested and then the numerical model using a finite element analysis was validated. The results obtained indicate that normal Stresses are greatest at the site of fracture in a initial state of osteosynthesis and as the bone goes regenerating these tensions will be smaller in metal plates fixed to the bones. The analytical results are in acordance to the numerical results and with the experimental results. Which means the numerical model is an important instrument in biomechanical analysis of fractures.
Description
Keywords
Fémur Tíbia Fratura Osteossíntese Placas metálicas Elementos finitos