Logo do repositório
 
A carregar...
Miniatura
Publicação

Comparing clustering and partitioning strategies

Utilize este identificador para referenciar este registo.

Orientador(es)

Resumo(s)

In this work we compare balance and edge-cut evaluation metrics to measure the performance of two well-known graph data-grouping algorithms applied to four web and social network graphs. One of the algorithms employs a partitioning technique using Kmetis tool, and the other employs a clustering technique using Scluster tool. Because clustering algorithms use a similarity measure between each graph node and partitioning algorithms use a dissimilarity measure (weight), it was necessary to apply a normalized function to convert weighted graphs to similarity matrices. The numerical results show that partitioning algorithms behave clearly better than to the clustering counterparts when applied to these types of graphs.

Descrição

Palavras-chave

Clustering Partitioning Web graph

Contexto Educativo

Citação

Afonso, Carlos; Ferreira, Fábio; Exposto, José; Pereira, Ana I. (2012). Comparing clustering and partitioning strategies. In International Conference of Numerical Analysis and Applied Mathematics (ICNAAM). p. 782-785. ISBN 978-0-7354-1091-6

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Licença CC

Métricas Alternativas