Repository logo
 
No Thumbnail Available
Publication

Maximum matching by convex quadratic programming based o an adverse graph conjecture

Use this identifier to reference this record.
Name:Description:Size:Format: 
ECC2012-abstracts.pdf959.86 KBAdobe PDF Download

Advisor(s)

Abstract(s)

In this talk, we describe a procedure for determining a maximum stable set in a graph with convex-$QP$ stability number (which is a graph whose stability number can be determined by solving a convex quadratic programming problem) unless there is a subgraph for which neither the optimal value of the convex quadratic program nor the least adjacency eigenvalue changes when the neighborhood of any vertex is deleted. Such a graph is called adverse. Assuming the trueness of the adverse graph conjecture (which states that every adverse graph has convex-$QP$ stability number), an algorithm for the recognition of graphs with convex-$QP$ stability number is introduced and applied to the determination of a maximum matching. With this procedure, we decide if a graph has or not convex-$QP$ stability number or a counterexample for the conjecture is determined. So far, from our computations, no counterexample was found and we believe that this conjecture is true.

Description

Keywords

Maximum matching Convex quadratic programming

Citation

Pacheco, Maria F.; Cardoso, Domingos Moreira; Luz, Carlos J. (2012). Maximum matching by convex quadratic programming based o an adverse graph conjecture. In ECCO XXV - 25th Conference of Eurepean Chapter of Operational Research. Antalya, Turkey

Research Projects

Organizational Units

Journal Issue